skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cascading Losses in Reinsurance Networks
We develop a model for contagion in reinsurance networks by which primary insurers’ losses are spread through the network. Our model handles general reinsurance contracts, such as typical excess of loss contracts. We show that simpler models existing in the literature—namely proportional reinsurance—greatly underestimate contagion risk. We characterize the fixed points of our model and develop efficient algorithms to compute contagion with guarantees on convergence and speed under conditions on network structure. We characterize exotic cases of problematic graph structure and nonlinearities, which cause network effects to dominate the overall payments in the system. Last, we apply our model to data on real-world reinsurance networks. Our simulations demonstrate the following. (1) Reinsurance networks face extreme sensitivity to parameters. A firm can be wildly uncertain about its losses even under small network uncertainty. (2) Our sensitivity results reveal a new incentive for firms to cooperate to prevent fraud, because even small cases of fraud can have outsized effect on the losses across the network. (3) Nonlinearities from excess of loss contracts obfuscate risks and can cause excess costs in a real-world system. This paper was accepted by Baris Ata, stochastic models and simulation.  more » « less
Award ID(s):
1653354
PAR ID:
10198337
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Management Science
Volume:
66
Issue:
9
ISSN:
0025-1909
Page Range / eLocation ID:
4246 to 4268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others' willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions. 
    more » « less
  2. Bae, K-H; Feng, B; Kim, S; Lazarova-Molnar, S; Zheng, Z; Roeder, T; Thiesing, R. (Ed.)
    Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others’ willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions. 
    more » « less
  3. Complex contagion models have been developed to understand a wide range of social phenomena such as adoption of cultural fads, the diffusion of belief, norms, and innovations in social networks, and the rise of collective action to join a riot. Most existing works focus on contagions where individuals’ states are represented by binary variables, and propagation takes place over a single isolated network. However, characterization of an individual’s standing on a given matter as a binary state might be overly simplistic as most of our opinions, feelings, and perceptions vary over more than two states. Also, most real-world contagions take place over multiple networks (e.g., Twitter and Facebook) or involve multiplex networks where individuals engage in different types of relationships (e.g., co-worker, family, etc.). To this end, this paper studies multi-stage complex contagions that take place over multi-layer or multiplex networks. Under a linear threshold based contagion model, we first give analytic results for the expected size of global cascades, i.e., cases where a randomly chosen node can initiate a propagation that eventually reaches a positive fraction of the whole population. Then, analytic results are confirmed by an extensive numerical study. In addition, we demonstrate how the dynamics of complex contagions is affected by the structural properties of the networks. In particular, we reveal an interesting connection between the assortativity of a network and the impact of hyper-active nodes on the cascade size. 
    more » « less
  4. Common knowledge (CK) is a phenomenon where each individual within a group knows the same information and everyone knows that everyone knows the information, infinitely recursively. CK spreads information as a contagion through social networks in ways different from other models like susceptible-infectious-recovered (SIR) model. In a model of CK on Facebook, the biclique serves as the characterizing graph substructure for generating CK, as all nodes within a biclique share CK through their walls. To understand the effects of network structure on CK-based contagion, it is necessary to control the numbers and sizes of bicliques in networks. Thus, learning how to generate these CK networks (CKNs) is important. Consequently, we develop an exponential random graph model (ERGM) that constructs networks while controlling for bicliques. Our method offers powerful prediction and inference, reduces computational costs significantly, and has proven its merit in contagion dynamics through numerical experiments. 
    more » « less
  5. Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms. 
    more » « less