skip to main content


Title: Cascading Losses in Reinsurance Networks
We develop a model for contagion in reinsurance networks by which primary insurers’ losses are spread through the network. Our model handles general reinsurance contracts, such as typical excess of loss contracts. We show that simpler models existing in the literature—namely proportional reinsurance—greatly underestimate contagion risk. We characterize the fixed points of our model and develop efficient algorithms to compute contagion with guarantees on convergence and speed under conditions on network structure. We characterize exotic cases of problematic graph structure and nonlinearities, which cause network effects to dominate the overall payments in the system. Last, we apply our model to data on real-world reinsurance networks. Our simulations demonstrate the following. (1) Reinsurance networks face extreme sensitivity to parameters. A firm can be wildly uncertain about its losses even under small network uncertainty. (2) Our sensitivity results reveal a new incentive for firms to cooperate to prevent fraud, because even small cases of fraud can have outsized effect on the losses across the network. (3) Nonlinearities from excess of loss contracts obfuscate risks and can cause excess costs in a real-world system. This paper was accepted by Baris Ata, stochastic models and simulation.  more » « less
Award ID(s):
1653354
PAR ID:
10198337
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Management Science
Volume:
66
Issue:
9
ISSN:
0025-1909
Page Range / eLocation ID:
4246 to 4268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others' willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions. 
    more » « less
  2. Bae, K-H ; Feng, B ; Kim, S ; Lazarova-Molnar, S ; Zheng, Z ; Roeder, T ; Thiesing, R. (Ed.)
    Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others’ willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions. 
    more » « less
  3. Common knowledge (CK) is a phenomenon where each individual within a group knows the same information and everyone knows that everyone knows the information, infinitely recursively. CK spreads information as a contagion through social networks in ways different from other models like susceptible-infectious-recovered (SIR) model. In a model of CK on Facebook, the biclique serves as the characterizing graph substructure for generating CK, as all nodes within a biclique share CK through their walls. To understand the effects of network structure on CK-based contagion, it is necessary to control the numbers and sizes of bicliques in networks. Thus, learning how to generate these CK networks (CKNs) is important. Consequently, we develop an exponential random graph model (ERGM) that constructs networks while controlling for bicliques. Our method offers powerful prediction and inference, reduces computational costs significantly, and has proven its merit in contagion dynamics through numerical experiments. 
    more » « less
  4. Network structure provides critical information for understanding the dynamic behavior of complex systems. However, the complete structure of real-world networks is often unavailable, thus it is crucially important to develop approaches to infer a more complete structure of networks. In this paper, we integrate the configuration model for generating random networks into an Expectation–Maximization–Aggregation (EMA) framework to reconstruct the complete structure of multiplex networks. We validate the proposed EMA framework against the Expectation–Maximization (EM) framework and random model on several real-world multiplex networks, including both covert and overt ones. It is found that the EMA framework generally achieves the best predictive accuracy compared to the EM framework and the random model. As the number of layers increases, the performance improvement of EMA over EM decreases. The inferred multiplex networks can be leveraged to inform the decision-making on monitoring covert networks as well as allocating limited resources for collecting additional information to improve reconstruction accuracy. For law enforcement agencies, the inferred complete network structure can be used to develop more effective strategies for covert network interdiction. 
    more » « less
  5. Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms. 
    more » « less