In forests adapted to infrequent (> 100-year) stand-replacing fires, novel short-interval (< 30- year) fires burn young forests before they recover from previous burns. Postfire tree regeneration is reduced, plant communities shift, soils are hotter and drier, but effects on biogeochemical cycling are unresolved. We asked how postfire nitrogen (N) stocks, N availability and N fixation varied in lodgepole pine (Pinus contorta var. latifolia) forests burned at long and short intervals in Grand Teton National Park (Wyoming, USA). In 2021 and 2022, we sampled 0.25-ha plots that burned as long-interval (> 130-year) stand-replacing fire in 2000 (n = 3) or 2016 (n = 3) and nearby plots of shortinterval (16-year) fire that burned as stand-replacing fire in both years (n = 6 ‘reburns’). Five years postfire, aboveground N stocks were 31% lower in short- versus long-interval fire (77 vs. 109 kg N ha-1, respectively) and 76% lower than 21-year-old stands that did not reburn (323 kg N ha-1). However, soil total N averaged 1,072 kg N ha-1 and dominated ecosystem N stocks, which averaged 1,235 kg N ha-1 and did not vary among burn categories. Annual resinsorbed nitrate was highest in reburns and positively correlated with understory species richness and biomass. Lupinus argenteus was sparse, and asymbiotic N fixation rates were modest in all plots (< 0.1 kg N ha-1 y-1). Although ecosystem N stocks were unaffected, high-severity short-interval fire reduced and repartitioned aboveground N stocks and increased N availability. These shifts in N pools and fluxes suggest reburns can markedly alter N cycling in subalpine forests.
more »
« less
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Abstract. Fire frequency exerts a fundamental control on productivity and nutrientcycling in savanna ecosystems. Individual fires often increaseshort-term nitrogen (N) availability to plants, but repeated burningcauses ecosystem N losses and can ultimately decrease soil organicmatter and N availability. However, these effects remain poorlyunderstood due to limited long-term biogeochemical data. Here, weevaluate how fire frequency and changing vegetation compositioninfluenced wood stable N isotopes (δ15N) across space andtime at one of the longest running prescribed burn experimentsin the world (established in 1964). We developed multiple δ15N recordsacross a burn frequency gradient from precisely dated Quercus macrocarpa tree rings in an oak savanna at Cedar Creek EcosystemScience Reserve, Minnesota, USA. Sixteen trees were sampled across fourtreatment stands that varied with respect to the temporal onset of burning and burnfrequency but were consistent in overstory species representation, soilcharacteristics, and topography. Burn frequency ranged from an unburnedcontrol stand to a high-fire-frequency stand that had burned in 4 ofevery 5 years during the past 55 years. Because N stocks and net Nmineralization rates are currently lowest in frequently burned stands,we hypothesized that wood δ15N trajectories would declinethrough time in all burned stands, but at a rate proportional to the firefrequency. We found that wood δ15N records within each standwere remarkably coherent in their mean state and trend through time. Agradual decline in wood δ15N occurred in the mid-20thcentury in the no-, low-, and medium-fire stands, whereas there was notrend in the high-fire stand. The decline in the three stands did notsystematically coincide with the onset of prescribed burning. Thus, wefound limited evidence for variation in wood δ15N that couldbe attributed directly to long-term fire frequency in this prescribedburn experiment in temperate oak savanna. Our wood δ15Nresults may instead reflect decadal-scale changes in vegetationcomposition and abundance due to early- to mid-20th-century firesuppression.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10198387
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 17
- Issue:
- 18
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 4509 to 4522
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fire activity is changing dramatically across the globe, with uncertain effects on ecosystem processes, especially below‐ground. Fire‐driven losses of soil carbon (C) are often assumed to occur primarily in the upper soil layers because the repeated combustion of above‐ground biomass limits organic matter inputs into surface soil. However, C losses from deeper soil may occur if frequent burning reduces root biomass inputs of C into deep soil layers or stimulates losses of C via leaching and priming.To assess the effects of fire on soil C, we sampled 12 plots in a 51‐year‐long fire frequency manipulation experiment in a temperate oak savanna, where variation in prescribed burning frequency has created a gradient in vegetation structure from closed‐canopy forest in unburned plots to open‐canopy savanna in frequently burned plots.Soil C stocks were nonlinearly related to fire frequency, with soil C peaking in savanna plots burned at an intermediate fire frequency and declining in the most frequently burned plots. Losses from deep soil pools were significant, with the absolute difference between intermediately burned plots versus most frequently burned plots more than doubling when the full 1 m sample was considered rather than the top 0–20 cm alone (losses of 98.5 Mg C/ha [−76%] and 42.3 Mg C/ha [−68%] in the full 1 m and 0–20 cm layers respectively). Compared to unburned forested plots, the most frequently burned plots had 65.8 Mg C/ha (−58%) less C in the full 1 m sample. Root biomass below the top 20 cm also declined by 39% with more frequent burning. Concurrent fire‐driven losses of nitrogen and gains in calcium and phosphorus suggest that burning may increase nitrogen limitation and play a key role in the calcium and phosphorus cycles in temperate savannas.Synthesis. Our results illustrate that fire‐driven losses in soil C and root biomass in deep soil layers may be critical factors regulating the net effect of shifting fire regimes on ecosystem C in forest‐savanna transitions. Projected changes in soil C with shifting fire frequencies in savannas may be 50% too low if they only consider changes in the topsoil.more » « less
-
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a prescribed burn occurring in the Okanogan–Wenatchee National Forest. We utilize the logit model to further assess how personnel availability compares to other potential barriers (e.g., meteorological conditions) in terms of association with odds of a prescribed burn occurring. Our analysis finds that fall and spring days in general have distinct constellations of characteristics. Unavailability of personnel is associated with lower odds of prescribed burning in the fall season, controlling for meteorological conditions. However, in the spring, only fuel moisture is observed to be associated with the odds of prescribed burning. Our findings suggest that if agencies aim to increase prescribed burning to mitigate wildfire risk, workforce decisions should prioritize firefighter availability in the fall.more » « less
-
Abstract Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi‐decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54‐year fire frequency experiment in a temperate oak savanna–forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2 = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease–fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.more » « less
-
We investigated radial growth of post oak (Quercus stellata Wangenh.) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting, thinning, and prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. The RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring and early summer the current year, and negatively correlated to maximum daily temperatures and drought index late spring – early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, the RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, a 100 mm reduction in June precipitation decreased RWI by 7%, a 1 °C increase in previous-year September daily minimum temperature increased RWI by 3.5%, and a 1 °C increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring and summer temperatures may be reduced by a longer growing season under warmer climate scenarios. However, management did not appear to influence RWI.more » « less
An official website of the United States government

