skip to main content

Title: Scaling up biodiversity–ecosystem function relationships across space and over time
Understanding how to scale up effects of biological diversity on ecosystem functioning and services remains challenging. There is a general consensus that biodiversity loss alters ecosystem processes underpinning the goods and services upon which humanity depends. Yet, most of that consensus stems from experiments performed at small spatial-scales for short time-frames, which limits transferability of conclusions to longer-term, landscape-scale conservation policies and management. Here we develop quantitative scaling relationships linking 374 experiments that tested plant diversity effects on biomass production across a range of scales. We show that biodiversity effects increase by factors of 1.68 and 1.10 for each 10-fold increase in experiment temporal and spatial scales, respectively. Contrary to prior studies, our analyses suggest that the time scale of experiments, rather than their spatial scale, is the primary source of variation in biodiversity effects. But consistent with earlier research, our analyses reveal that complementarity effects, rather than selection effects, drive the positive space-time interactions for plant diversity effects. Importantly, we also demonstrate complex space-time interactions and nonlinear responses that emphasize how simple extrapolations from small-scale experiments are likely to underestimate biodiversity effects in real-world ecosystems. Quantitative scaling relationships from this research are a crucial step towards bridging controlled experiments more » that identify biological mechanisms across a range of scales. Predictions from scaling relationships like these could then be compared with observations for fine-tuning the relationships and ultimately improving their capacities to predict consequences of biodiversity loss for ecosystem functioning and services over longer time-frames across real-world landscapes. « less
Award ID(s):
1831944 1725683
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12more »biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.« less
  2. Agricultural landscapes in North America have developed through complex interactions of biophysical, socioeconomic and technological forces. While they can be highly productive, these landscapes are increasingly simplified, causing biodiversity loss. As a result, ecosystem services associated with biodiversity are being dismantled. Agricultural landscape structure arises from collective decisions of farmers over long time periods, which are usually not intentionally coordinated beyond the farm scale. Regaining ecosystem services will require active efforts to intentionally redesign landscapes, in part based on ecological evidence about relationships between landscape structure and ecosystem services. Here we focus on services provided by arthropods and how to foster them at landscape scales. We first provide a brief history of how agricultural landscape structure in temperate North America developed and review the landscape-scale ecological drivers underpinning arthropod-based ecosystem services. We then propose ecological and social principles for designing agricultural landscapes, based on the ecological evidence we reviewed and on previous efforts in agricultural landscape design. Finally, we look ahead to discern prospects for putting agricultural landscape design into practice, including ecological, technological and policy opportunities. To reap benefits from arthropod-based services, future agricultural landscapes will need to increase in structural heterogeneity and diversity across multiple dimensions including crop,more »farmer and consumer diversity. A number of knowledge gaps persist, including how to design landscapes at spatial scales that are relevant to service providers, identifying areas of overlap or conflict between design for ecosystem services and for biodiversity conservation more broadly and navigating the social and political processes needed to implement landscape design.« less
  3. Abstract

    A rich body of evidence from local-scale experiments and observational studies has revealed stabilizing effects of biodiversity on ecosystem functioning. However, whether these effects emerge across entire regions and continents remains largely overlooked. Here we combine data on the distribution of more than 57,500 plant species and remote-sensing observations throughout the entire Western Hemisphere to investigate the role of multiple facets of plant diversity (species richness, phylogenetic diversity, and functional diversity) in mediating the sensitivity of ecosystems to climate variability at the regional-scale over the past 20 years. We show that, across multiple biomes, regions of greater plant diversity exhibit lower sensitivity (more stable over time) to temperature variability at the interannual and seasonal-scales. While these areas can display lower sensitivity to interannual variability in precipitation, they emerge as highly sensitive to precipitation seasonality. Conserving landscapes of greater diversity may help stabilize ecosystem functioning under climate change, possibly securing the continuous provisions of productivity-related ecosystem service to people.

  4. Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of ‘real-world’ ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how newmore »research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers.« less
  5. null (Ed.)
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding andmore »theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association.« less