skip to main content

Title: The results of biodiversity–ecosystem functioning experiments are realistic
A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.  more » « less
Award ID(s):
1831944 1929393
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Ecology & Evolution
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems. 
    more » « less
  2. Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend not only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

    more » « less
  3. Numerous biodiversity–ecosystem functioning (BEF) experiments have shown that plant community productivity typically increases with species diversity. In these studies, diversity is generally quantified using metrics of taxonomic, phylogenetic, or functional differences among community members. Research has also shown that the relationships between species diversity and functioning depends on the spatial scale considered, primarily because larger areas may contain different ecosystem types and span gradients in environmental conditions, which result in a turnover of the species set present locally. A fact that has received little attention, however, is that ecological systems are hierarchically structured, from genes to individuals to communities to entire landscapes, and that additional biological variation occurs at levels of organization above and below those typically considered in BEF research. Here, we present cases of diversity effects at different hierarchical levels of organization and compare these to the species‐diversity effects traditionally studied. We argue that when this evidence is combined across levels, a general framework emerges that allows the transfer of insights and concepts between traditionally disparate disciplines. Such a framework presents an important step towards a better understanding of the functional importance of diversity in complex, real‐world systems. 
    more » « less
  4. Positive biodiversity–ecosystem functioning (BEF) relationships observed in experiments can be challenging to identify in natural communities. Freshwater animal communities are disproportionately harmed by global change that results in accelerated species loss. Understanding how animal-mediated ecosystems functions may change as a result of global change can help determine whether biodiversity or species-specific conservation will be effective at maintaining function. Unionid mussels represent half of imperiled species in freshwater ecosystems globally and perform important ecological functions such as water filtration and nutrient recycling. We explored BEF relationships for 22 naturally assembled mussel aggregations spanning three river basins. We used the Price equation to partition the contributions of species richness, composition, and context dependent interactions to two functions of interests: spatially-explicit standing-stock biomass (indirect proxy for function) and species-specific nitrogen (N) excretion rates (direct measure of N recycling). Random and non-random species loss each reduced biomass and N recycling. Many rare species with low contributions to biomass contributed to standing-stock biomass in all basins. Widespread species had variable function across sites, such that context dependent effects (CDEs) outweighed richness effects on standing-stock biomass in two basins, and were similar to richness effects in the third. Richness effects outweighed CDEs for N recycling. Thus, many species contributed a low proportion to overall N-recycling; a product we attribute to the high evenness and functional effect trait diversity associated with these communities. The loss of low-functioning species reduced the function of persisting species. This novel result using observational data adds evidence that positive species interactions, such as interspecific facilitation, may be a mechanism by which biodiversity enhances ecosystem functions. Our work stresses the importance of evaluating species-specific contributions to functions in diverse systems, such as nutrient cycling when maintaining specific animal-mediated functions is a management goal because indirect proxies may not completely characterize BEF relationships. 
    more » « less
  5. Abstract

    Although diversity‐dependent plant–soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influences of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 yr from two grassland biodiversity experiments. Model plant communities differing in plant species and functional group richness (current plant diversity treatment) were grown in soils conditioned by plant communities with either low‐ or high‐diversity (soil history treatment). Our results indicate that plant diversity can modify plant productivity through both diversity‐mediated plant–plant and plant–soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. Structural equation modeling suggests that the underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, soil nitrogen availability and soil nematode richness). Thus, effects of plant diversity loss on plant productivity may persist or even increase over time because of biotic and abiotic soil legacy effects.

    more » « less