skip to main content

Title: The results of biodiversity–ecosystem functioning experiments are realistic
A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 more » biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1831944 1929393
Publication Date:
NSF-PAR ID:
10198407
Journal Name:
Nature Ecology & Evolution
ISSN:
2397-334X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion,more »kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems.« less
  2. Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend notmore »only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

    « less
  3. Understanding how to scale up effects of biological diversity on ecosystem functioning and services remains challenging. There is a general consensus that biodiversity loss alters ecosystem processes underpinning the goods and services upon which humanity depends. Yet, most of that consensus stems from experiments performed at small spatial-scales for short time-frames, which limits transferability of conclusions to longer-term, landscape-scale conservation policies and management. Here we develop quantitative scaling relationships linking 374 experiments that tested plant diversity effects on biomass production across a range of scales. We show that biodiversity effects increase by factors of 1.68 and 1.10 for each 10-fold increase in experiment temporal and spatial scales, respectively. Contrary to prior studies, our analyses suggest that the time scale of experiments, rather than their spatial scale, is the primary source of variation in biodiversity effects. But consistent with earlier research, our analyses reveal that complementarity effects, rather than selection effects, drive the positive space-time interactions for plant diversity effects. Importantly, we also demonstrate complex space-time interactions and nonlinear responses that emphasize how simple extrapolations from small-scale experiments are likely to underestimate biodiversity effects in real-world ecosystems. Quantitative scaling relationships from this research are a crucial step towards bridging controlled experimentsmore »that identify biological mechanisms across a range of scales. Predictions from scaling relationships like these could then be compared with observations for fine-tuning the relationships and ultimately improving their capacities to predict consequences of biodiversity loss for ecosystem functioning and services over longer time-frames across real-world landscapes.« less
  4. null (Ed.)
    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high-resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least-squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation 𝑅2 R 2 of more than 0.25. For all vegetation traits, validation 𝑅2 R 2 ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our resultsmore »suggest that currently available AOP-derived data products should not be used without extensive ground-based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in-situ field measurements across a diversity of sites.« less
  5. Elizabeth Borer (Ed.)
    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high-resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least-squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP-derived datamore »products should not be used without extensive ground-based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in-situ field measurements across a diversity of sites.« less