Geometric optical distortion is a significant contributor to the astrometric error budget in large telescopes using adaptive optics. To increase astrometric precision, optical distortion calibration is necessary. We investigate using smartphone Organic Light-Emitting Diode (OLED) screens as astrometric calibrators. Smartphones are low-cost, have stable illumination, and can be quickly reconfigured to probe different spatial frequencies of an optical system’s geometric distortion. In this work, we characterize the astrometric accuracy of a Samsung S20 smartphone, with a view towards providing large format, flexible astrometric calibrators for the next generation of astronomical instruments. We find the placement error of the pixels to be 189[Formula: see text]nm ± 15[Formula: see text]nm Root Mean Square (RMS). At this level of error, milliarcsecond astrometric accuracy can be obtained on modern astronomical instruments.
more »
« less
Optical calibration and distortion correction for a volumetric augmented reality display
We develop optical calibration and distortion correction for a recently developed DMD-based volumetric aug- mented reality display. The display is capable of displaying imagery over a large volume — composed of 280 depth planes over a large depth-range (15 cm to 400 cm) and 40 degrees field-of-view. An unintended property of this display is that the field-of-view of the depth planes changes slightly over depth. This can cause distortions, perceptual errors for the perspective depth cue, and reduce the image quality slightly. To address these issues, we develop an optical calibration method and a distortion correction as a post-processing step to our rendering pipeline.
more »
« less
- Award ID(s):
- 1840131
- PAR ID:
- 10198404
- Date Published:
- Journal Name:
- Emerging Digital Micromirror Device Based Systems and Applications XII, Photonics West 2020.
- Page Range / eLocation ID:
- 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work provides the design of a multifocal display that can create a dense stack of focal planes in a single shot. We achieve this using a novel computational lens that provides spatial selectivity in its focal length, i.e, the lens appears to have different focal lengths across points on a display behind it. This enables a multifocal display via an appropriate selection of the spatially-varying focal length, thereby avoiding time multiplexing techniques that are associated with traditional focus tunable lenses. The idea central to this design is a modification of a Lohmann lens, a focus tunable lens created with two cubic phase plates that translate relative to each other. Using optical relays and a phase spatial light modulator, we replace the physical translation of the cubic plates with an optical one, while simultaneously allowing for different pixels on the display to undergo different amounts of translations and, consequently, different focal lengths. We refer to this design as a Split-Lohmann multifocal display. Split-Lohmann displays provide a large étendue as well as high spatial and depth resolutions; the absence of time multiplexing and the extremely light computational footprint for content processing makes it suitable for video and interactive experiences. Using a lab prototype, we show results over a wide range of static, dynamic, and interactive 3D scenes, showcasing high visual quality over a large working range.more » « less
-
In time-correlated single-photon counting (TCSPC), photons that arrive during the detector and timing electronics dead times are missed, causing distortion of the detection time distribution. Conventional wisdom holds that TCSPC should be performed with detections in fewer than 5% of illumination cycles to avoid substantial distortion. This requires attenuation and leads to longer acquisition times if the incident flux is too high. Through the example of ranging with a single-photon lidar system, this work demonstrates that accurately modeling the sequence of detection times as a Markov chain allows for measurements at much higher incident flux without attenuation. Our probabilistic model is validated by the close match between the limiting distribution of the Markov chain and both simulated and experimental data, so long as issues of calibration and afterpulsing are minimal. We propose an algorithm that corrects for the distortion in detection histograms caused by dead times without assumptions on the form of the transient light intensity. Our histogram correction yields substantially improved depth imaging performance, and modest additional improvement is achieved with a parametric model assuming a single depth per pixel. We show results for depth and flux estimation with up to 5 photoelectrons per illumination cycle on average, facilitating an increase in time efficiency of more than two orders of magnitude. The use of identical TCSPC equipment in other fields suggests that our modeling and histogram correction could likewise enable high-flux acquisitions in fluorescence lifetime microscopy or quantum optics applications.more » « less
-
Abstract We study projection-enabled enhancement of asymmetric optical responses of plasmonic metasurfaces for photon-spin control of their far field scattering. Such a process occurs by detecting the light scattered by arrays of asymmetric U-shaped nanoantennas along their planes (in-plane scattering). The nanoantennas are considered to have relatively long bases and two unequal arms. Therefore, as their view angles along the planes of the arrays are changed, they offer an extensive range of shape and size projections, providing a wide control over the contributions of plasmonic near fields and multipolar resonances to the far field scattering of the arrays. We show that this increases the degree of the asymmetric spin-polarization responses of the arrays to circularly polarized light, offering a large amount of chirality. In particular, our results show the in-plane scattering of such metasurfaces can support opposite handedness, offering the possibility of photon spin-dependent directional control of energy routing.more » « less
-
Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)We calculate an optical distortion solution for the OSIRIS Imager on the Keck I telescope, by matching observations of globular clusters to a Hubble reference catalogue. This solution can be applied to correct astrometric distortions in OSIRIS frames, improving the astrometric accuracy of observations. We model the distortion with a 5th order Legendre polynomial. The distortion we find matches the expected OSIRIS distortion, and has a fit error of 0.6 mas, but has large residuals of 7 mas. We are currently iterating on an improved reference frame to improve the residual. Additionally, we have installed the Precision Calibration Unit (PCU) on the Keck I optical bench, which will generates an artificial grid of stars for use in future distortion calculations.more » « less
An official website of the United States government

