The demand for reconfigurable devices for emerging RF and microwave applications has been growing in recent years, with additive manufacturing and photonic thermal treatment presenting new possibilities to supplement conventional fabrication processes to meet this demand. In this paper, we present the realization and analysis of barium–strontium–titanate-(Ba0.5Sr0.5TiO3)-based ferroelectric variable capacitors (varactors), which are additively deposited on top of conventionally fabricated interdigitated capacitors and enhanced by photonic thermal processing. The ferroelectric solution with suspended BST nanoparticles is deposited on the device using an ambient spray pyrolysis method and is sintered at low temperatures using photonic thermal processing by leveraging the high surface-to-volume ratio of the BST nanoparticles. The deposited film is qualitatively characterized using SEM imaging and XRD measurements, while the varactor devices are quantitatively characterized by using high-frequency RF measurements from 300 MHz to 10 GHz under an applied DC bias voltage ranging from 0 V to 50 V. We observe a maximum tunability of 60.6% at 1 GHz under an applied electric field of 25 kV/mm (25 V/μm). These results show promise for the implementation of photonic thermal processing and additive manufacturing as a means to integrate reconfigurable ferroelectric varactors in flexible electronics or tightly packaged on-chip applications, where a limited thermal budget hinders the conventional thermal processing.
more »
« less
A 3D-printed molecular ferroelectric metamaterial
Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field–assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.
more »
« less
- PAR ID:
- 10198510
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 44
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 27204-27210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm −1 . The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics.more » « less
-
Abstract Designing and printing metamaterials with customizable architectures enables the realization of unprecedented mechanical behaviors that transcend those of their constituent materials. These behaviors are recorded in the form of response curves, with stress-strain curves describing their quasi-static footprint. However, existing inverse design approaches are yet matured to capture the full desired behaviors due to challenges stemmed from multiple design objectives, nonlinear behavior, and process-dependent manufacturing errors. Here, we report a rapid inverse design methodology, leveraging generative machine learning and desktop additive manufacturing, which enables the creation of nearly all possible uniaxial compressive stress‒strain curve cases while accounting for process-dependent errors from printing. Results show that mechanical behavior with full tailorability can be achieved with nearly 90% fidelity between target and experimentally measured results. Our approach represents a starting point to inverse design materials that meet prescribed yet complex behaviors and potentially bypasses iterative design-manufacturing cycles.more » « less
-
Architected metamaterials have emerged as a central topic in materials science and mechanics, thanks to the rapid development of additive manufacturing techniques, which have enabled artificial materials with outstanding mechanical properties. This Letter seeks to investigate the elastodynamic behavior of octet truss lattices as an important type of architected metamaterials for high effective strength and vibration shielding. We design, fabricate, and experimentally characterize three types of octet truss structures, including two homogenous structures with either thin or thick struts and one hybrid structure with alternating strut thickness. High elastic wave transmission rate is observed for the lattice with thick struts, while strong vibration mitigation is captured from the homogenous octet truss structure with thin struts as well as the hybrid octet truss lattice, though the underlying mechanisms for attenuation are fundamentally different (viscoelasticity induced dampening vs bandgaps). Compressional tests are also conducted to evaluate the effective stiffness of the three lattices. This study could open an avenue toward multifunctional architected metamaterials for vibration shielding with high mechanical strength.more » « less
-
Abstract Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing.more » « less
An official website of the United States government
