Abstract Next‐generation high‐energy‐density batteries require ideally stable metal anodes, for which smooth metal deposits during battery recharging are considered a sign of interfacial stability that can ensure high efficiency and long cycle life. With the recent successes, whether the absolute morphological stability guarantees absolute electrochemical stability and safety has emerged as a critical question to be investigated in systematic experiments under practical conditions. Here, the ideally stable ingot‐type sodium metal anode is used as a model system to identify the fast‐charging limits, that is, highest safe current density, of metal anodes. The results show that metal penetration can still occur at relatively low current densities, but the overpotentials at the penetration depend on the pore sizes of the separators and surprisingly follow a simple mathematical model developed as the Young–Laplace overpotential. This study suggests that the success of stable metal batteries with even the ideally smooth metal anode requires the holistic design of the electrolyte, separator, and metal anodes to ensure penetration‐free operation.
more »
« less
Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels
Lithium metal penetrations through the liquid-electrolyte-wetted porous separator and solid electrolytes are a major safety concern of next-generation rechargeable metal batteries. Penetrations were frequently discovered to occur through only a few isolated channels, as revealed by “black spots” on both sides of the separator or electrolyte, which manifest a highly localized ionic flux or current density. Predictions of the penetration time have been difficult due to the hidden and unclear dynamics in these penetration channels. Here, using glass capillary cells, we investigate for the first time the unexpectedly sensitive influence of channel geometry on the concentration polarization and dendrite initiation processes. The characteristic time for the complete depletion of salt concentration at the surface of the advancing electrode, i.e. Sand's time, exhibits a nonlinear dependence on the curvature of the channel walls along the axial direction. While a positively deviated Sand's time scaling exponent can be used to infer a converging penetration area through the electrolyte, a negatively deviated scaling exponent suggests that diffusion limitations can be avoided in expanding channels, such that the fast-advancing tip-growing dendrites will not be initiated. The safety design of rechargeable metal batteries will benefit from considering the true local current densities and the conduction structures.
more »
« less
- Award ID(s):
- 1934122
- PAR ID:
- 10198621
- Date Published:
- Journal Name:
- Energy & Environmental Science
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 1754-5692
- Page Range / eLocation ID:
- 3504 to 3513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zinc metal anodes are attracting much attention to enable more economical and sustainable energy storage devices. However, like other metal anodes, dendritic growths and penetrations of porous separators are still challenging to eliminate. Introducing negative surface charges on the pore walls of separators have been exploited to enforce a uniform incoming Zn-ion flux toward more uniform electrodeposition, but penetrations induced by localized high current densities still remain in available systems. In this work, we report, for the first time, a bipolar separator that exploits the distinct electroosmotic effects of the negative and the positive surface charges. The surface charge effects on Zn dendrite growths were first verified in transparent capillary cells viaoperandovideo microscopy. By stacking the positively charged separator over the negatively charged separator as our proof-of-concept, the system offers preemptively a uniform Zn-ion flux through the negative layer yet starve-stops local metal growths that already penetrated the negative layer autonomously. Chronopotentiometry experiments with the symmetric cells reveal extended short-circuit time compared to control cells. Galvanostatic cycle-life experiments of full cells with the bipolar separator showed excellent cycle life of 5,000 cycles at the rate of 10 C, without signs of metal penetration.more » « less
-
Abstract Rechargeable alkali metal anodes hold the promise to significantly increase the energy density of current battery technologies. But they are plagued by dendritic growths and solid‐electrolyte interphase (SEI) layers that undermine the battery safety and cycle life. Here, a non‐porous ingot‐type sodium (Na) metal growth with self‐modulated shiny‐smooth interfaces is reported for the first time. The Na metal anode can be cycled reversibly, without forming whiskers, mosses, gas bubbles, or disconnected metal particles that are usually observed in other studies. The ideal interfacial stability confirmed in the microcapillary cells is the key to enable anode‐free Na metal full cells with a capacity retention rate of 99.93% per cycle, superior to available anode‐free Na and Li batteries using liquid electrolytes. Contradictory to the common beliefs established around alkali metal anodes, there is no repeated SEI formation on or within the sodium anode, supported by the X‐ray photoelectron spectroscopy elemental depth profile analyses, electrochemical impedance spectroscopy diagnosis, and microscopic imaging.more » « less
-
Sulfur and selenium based rechargeable batteries have attracted great attention due to their high gravimetric/volumetric energy densities owing to multielectron conversion reactions. Over the last few years, rationally designed nanomaterials have played a crucial role in the continuous growth of these battery systems. In this context, electrospun nanostructures are of paramount interest for the development of these rechargeable secondary batteries due to their high surface area to volume ratio and good mechanical stability. Here, a systematic and comprehensive review of the recent advances in the development of electrospun nanostructures as novel materials for next generation sulfur and selenium based lithium and sodium batteries is presented. In this review, we highlight the recent progress made in Li–S, RT Na–S, Li–S x Se y , RT Na–S x Se y , Li–Se and RT Na–Se batteries using electrospun carbon, polymers or heterostructures with tailored textural properties, compositions and surface functionalities (polysulfide trapping capability and catalytic activity) in cathodes, interlayers, separator coatings, and electrolyte membranes. The emphasis is placed on various synthesis strategies to design advanced electrospun nanostructures with tunable structural properties and the impact of these features on capacity, rate capability and long-term cycling. Moreover, we have introduced the ‘fraction of (electrochemically) active cathode (FAC)’ as a parameter to highlight the advantages of free-standing electrospun nanostructures compared to their non-electrospun or slurry-cast electrospun counterparts. Furthermore, current challenges and prospects in the use of electrospun nanostructures in each battery system are also discussed. We believe that this review will provide new opportunities in the field of advanced sulfur and selenium based rechargeable batteries using electrospun nanostructures.more » « less
-
Abstract This work demonstrates a new approach in using metal organic framework (MOF) materials to improve Li metal batteries, a burgeoning rechargeable battery technology. Instead of using the MIL‐125‐Ti MOF structure directly, the material is decomposed into intimately‐mixed amorphous titanium dioxide and crystalline terephthalic acid. The resulting composite material outperforms the oxide alone, the organic component alone, and the parent MOF in suppressing Li dendrite growth and extending cycle life of Li metal electrodes. Coated on a commercial polypropylene separator, this material induces the formation of a desirable solid electrolyte interphase layer comprising mechanically flexible organic species and ionically conductive lithium nitride species, which in turn leads to Li||Cu and Li||Li cells that can stably operate for hundreds of charging–discharging cycles. In addition, this material strongly adsorbs lithium polysulfides and can also benefit the cathode of lithium–sulfur batteries.more » « less
An official website of the United States government

