Archaean orbicular granitoids from western Australia were investigated to better understand crystal growth processes. The orbicules are dioritic to tonalitic spheroids dispersed in a granitic host magma. Most orbicules have at least two to three concentric bands composed of elongate and radially oriented hornblendes with interstitial plagioclase. Each band consists of a hornblende-rich outer layer and a plagioclase-rich inner layer. Doublet band thicknesses increase, crystal number density decreases, and grain size increases from rim to core, suggesting crystallization was more rapid on the rims than in the core. Despite these radial differences, mineral mode and bulk composition of each band are similar, indicating limited crystal-melt segregation during crystallization. These observations lead us to suggest that the orbicules represent slowly quenched blobs of hot dioritic to tonalitic liquids injected into a cooler granitic magma. The oscillatory bands in the orbicules can be explained by rapid, disequilibrium crystallization (supercooling). In particular, a linear correlation between bandwidth and radial distance from orbicule rim can be explained by transport-limited crystallization, wherein crystallization timescales are shorter than chemical diffusion timescales. The slope of this linear relationship corresponds to the square root of the ratio between effective chemical diffusivity in the growth medium and thermal diffusivity, resulting in effective chemical diffusivities of 3 × 10−8 m2/s. These high effective diffusivities require static diffusion through a free volatile phase (fluid) and/or a strong advective/convective component in the fluid. Regardless of the mechanisms, these effective diffusivities can be used to estimate growth rates of ~10−6 m/s or 0.4 cm/hr. Our results indicate that crystals can grow rapidly, possibly facilitated by fluids and dynamic conditions. These rapid growth rates suggest that centimetre or larger crystals, such as in porphyritic and pegmatitic systems, can conceivably grow within days.
more »
« less
Episodes of fast crystal growth in pegmatites
Pegmatites are shallow, coarse-grained magmatic intrusions with crystals occasionally approaching meters in length. Compared to their plutonic hosts, pegmatites are thought to have cooled rapidly, suggesting that these large crystals must have grown fast. Growth rates and conditions, however, remain poorly constrained. Here we investigate quartz crystals and their trace element compositions from miarolitic cavities in the Stewart pegmatite in southern California, USA, to quantify crystal growth rates. Trace element concentrations deviate considerably from equilibrium and are best explained by kinetic effects associated with rapid crystal growth. Kinetic crystal growth theory is used to show that crystals accelerated from an initial growth rate of 10−6–10−7 m s−1 to 10−5–10−4 m s−1 (10-100 mm day−1 to 1–10 m day−1), indicating meter sized crystals could have formed within days, if these rates are sustained throughout pegmatite formation. The rapid growth rates require that quartz crystals grew from thin (micron scale) chemical boundary layers at the fluid-crystal interfaces. A strong advective component is required to sustain such thin boundary layers. Turbulent conditions (high Reynolds number) in these miarolitic cavities are shown to exist during crystallization, suggesting that volatile exsolution, crystallization, and cavity generation occur together.
more »
« less
- PAR ID:
- 10198866
- Date Published:
- Journal Name:
- Nature communications
- Volume:
- 11
- Issue:
- 486
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigated the early stages of olivine crystal growth via in situ seeded experiments in a single plagioclase-hosted melt inclusion, using a heating stage microscope. Each experiment was subjected to a cooling ramp of 7800°C/h followed by an isothermal dwell at 19°C, 38°C, 57°C, 77°C, 96°C or 129°C of undercooling. The seeds (6–16 μm in diameter Ø) grew into large crystals (Ø 80–169 μm) in 3 to 30 min through the symmetrical development of tabular, skeletal, and dendritic overgrowths as the undercooling of the system increased. Time-resolved image processing and incremental measurements of the overgrowth thicknesses indicate up to three stages of crystal growth: an acceleration stage, a linear (constant growth rate) stage, and a deceleration stage. At the isotherm, the growth velocities reach a stable maximum that in all experiments corresponds to the period of linear growth. The highest linear values are measured at the {101} interfaces, from 2.1 × 10−8 m/s at 19°C of undercooling to 4.8 × 10−7 m/s at 129°C of undercooling. Crystal growth is slower at other interfaces, in the ranges 1.9–7.6 × 10−8 m/s and 4.5 × 10−9 – 7.6 × 10−8 m/s for the {100} and {001} forms, respectively. Growth in the <010> dimension appears limited to less than 2.4 × 10−8 m/s at 129°C of undercooling. We constrain the uncertainty on these growth velocities, which includes the environmental conditions (± 8.6°C on the nominal undercooling) and the measurements of crystal lengths (underestimated by <16% at most fast interfaces). A systematic and comprehensive review of 19 pre-existing datasets indicates that our linear growth velocities are faster than most growth rates determined at comparable undercoolings. Growth rates determined as half crystal lengths divided by total time are intrinsically low estimates of the true maximum, linear growth velocities, because the total time includes periods of slower or non-growth, and measured crystal dimensions are subject to projection foreshortening or truncation. These errors can lead to values that are several times to several orders of magnitude lower than the true maximum growth rates. This study completes and refines previously published data on the crystallization kinetics of olivine, highlighting the sensitivity of growth rates to specific environmental conditions and measurement methods. We emphasize the importance of symmetrical growth and true maximum growth velocities for interpreting olivine growth histories.more » « less
-
Optically-active optoelectronic materials are of great interest for many applications, including chiral sensing and circularly polarized light emission. Traditionally, such applications have been enabled by synthetic strategies to design chiral organic semiconductors and conductors. Here, centrosymmetric tetrathiafulvalene (TTF) crystals are rendered chiral on the mesoscale by crystal twisting. During crystallization from the melt, helicoidal TTF fibers were observed to grow radially outwards from a nucleation centre as spherulites, twisting in concert about the growth direction. Because molecular crystals exhibit orientation-dependent refractive indices, periodic concentric bands associated with continually rotating crystal orientations were observed within the spherulites when imaged between crossed polarizers. Under certain conditions, concomitant crystal twisting and bending was observed, resulting in anomolous crystal optical behavior. X-ray diffraction measurements collected on different spherulite bands indicated no difference in the molecular packing between straight and twisted TTF crystals, as expected for microscopic twisting pitches between 20–200 μm. Mueller matrix imaging, however, revealed preferential absorption and refraction of left- or right-circularly polarized light in twisted crystals depending on the twist sense, either clockwise or counterclockwise, about the growth direction. Furthermore, hole mobilities of 2.0 ± 0.9 × 10 −6 cm 2 V −1 s −1 and 1.9 ± 0.8 × 10 −5 cm 2 V −1 s −1 were measured for straight and twisted TTF crystals deposited on organic field-effect transistor platforms, respectively, demonstrating that crystal twisting does not negatively impact charge transport in these systems.more » « less
-
Heng, Jerry (Ed.)The morphological evolution of organic crystals during crystallization depends on the face-specific growth rates. Classical growth rate models relate the face-specific growth rates to the crystal lattice, energy of stable facets, growth mechanism, and supersaturation. The complexities of these models have increased over time to account accurately for solution conditions, the structure of growth units, and their attachment rates. Such advanced growth rate models require several layers of computations to obtain attachment energies of facets, nucleation rates, kink density, and attachment rates. Among these, the most intensive and time-consuming computation is for attachment rates, which require molecular dynamic simulations. This substantially increases the overall computation time to predict the absolute growth rate for even one crystallization condition. Since it is nearly impossible to iterate such a growth rate model, optimization schemes cannot be implemented to identify solution conditions that favor specific crystal growth. To reduce the computational time for attachment rate calculations, we implement a group contribution method (GCM) that relates the properties of functional groups in a molecule to their attachment rates to the crystal lattice, thereby rapidly estimating the growth rates of organic crystals. The process of molecular attachment involves partial desolvation of a solvated molecule, referred to as a transition state, followed by total desolvation via spontaneous attachment to a crystal facet. The first step in GCM is to identify the equilibrium states of fully solvated and partially desolvated solute molecules. The degree of supersaturation dictates the extent of this equilibrium and, thereby, the activation barrier for the growth of crystals, according to transition state theory. Identifying this equilibrium phenomenon allows for capturing the functional-group-specific interactions that depend on molecular motion, which could be related to operating conditions such as temperature and pressure. The stochastic optimization technique with Monte-Carlo sampling allows an efficient optimization problem solution to obtain the group interaction parameters. The GCM approach is first validated for the estimation of growth rates of glutamic acid and L-histidine, and then extended to predict growth rates of alanine and glycine rapidly. The optimized parameters and GCM scheme can be used to estimate growth rates in other crystallization systems.more » « less
-
The granitic water-saturated solidus (G-WSS) is the lower temperature limit of magmatic mineral crystallization. The accepted water-saturated solidus for granitic compositions was largely determined >60 years ago1. More recent advances in experimental petrology, improved analytical techniques, and recent observations that granitic systems can remain active or spend a significant proportion of their lives at conditions below the traditional G-WSS2–5 necessitate a careful experimental investigation of the near-solidus regions of granitic systems. Natural and synthetic starting materials were melted at 10 kbar and 900°C with 48 wt% H2O to produce hydrous glasses for subsequent experiments at lower PT conditions used to locate the G-WSS. We performed crystallization experiments and melting experiments at temperatures ranging from 575 to 800°C and 1, 6, 8, and 10 kbar on 12 granitoid compositions. First, we ran a series of isothermal crystallization experiments along each isobar at progressively lower temperatures until runs completely crystallized to identify apparent solidus temperatures. Geochemical analyses of quenched glass compositions demonstrate that progressive crystallization drives all starting compositions towards silica-rich, water-saturated rhyolitic/granitic melts (e.g., ~7578 wt% SiO2). After identifying the apparent solidus temperatures at which the various compositions crystallized, we then ran series of reversal-type melting experiments. With the goal of producing rocks with hydrous equilibrium microstructures, we crystallized compositions at temperatures ~10°C below the apparent solidus identified in crystallization experiments, and then heated isobarically to conditions that produced ~20% melt during the crystallization experiments. Importantly, crystallization experiments and heating experiments at the same PT conditions produced similar proportions of melt, crystals, and vapor. A time-series of experiments 230 days at PT conditions previously identified to produce ~10% to 20% melt did not reveal any kinetic effects on melt crystallization. Experiments at 6 to 10 kbar crystallized/melted at temperatures close to the published G-WSS. However, at lower pressures where the published G-WSS is strongly curved in PT space, all compositions investigated contained melt to temperatures ~75 to 100°C below the accepted G-WSS. The similarity of crystallization temperatures for the higher-pressure experiments to previously published results, similar phase proportions in melting and crystallization experiments, and the lack of kinetic effects on crystallization collectively suggest that our lower pressure constraints on the G-WSS are accurate. The new experimental results demonstrating that the lower-pressure G-WSS is significantly lower than unanimously accepted estimates will help us to better understand the storage conditions, evolution, and potential for eruption in mid- to upper-crustal silicic magmatic systems. (1) Tuttle, O.; Bowen, N. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8–KAlSi3O8–SiO2–H2O; Geological Society of America Memoirs; Geological Society of America, 1958; Vol. 74. https://doi.org/10.1130/MEM74. (2) Rubin, A. E.; Cooper, K. M.; Till, C. B.; Kent, A. J. R.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science 2017, 356 (6343), 1154–1156. https://doi.org/10.1126/science.aam8720. (3) Andersen, N. L.; Jicha, B. R.; Singer, B. S.; Hildreth, W. Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage. Proceedings of the National Academy of Sciences 2017, 114 (47), 12407–12412. https://doi.org/10.1073/pnas.1709581114. (4) Ackerson, M. R.; Mysen, B. O.; Tailby, N. D.; Watson, E. B. Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism. Nature 2018, 559 (7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2. (5) Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Lindgren, K. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology 2020, 175 (4). https://doi.org/10.1007/s00410-020-01677-1.more » « less
An official website of the United States government

