Title: Crustal thickening and endogenic oxidation of magmatic sulfur
Porphyry ore deposits, Earth’s most important resources of copper, molybdenum, and rhenium, are strongly associated with felsic magmas showing signs of high-pressure differentiation and are usually found in places with thickened crust (>45 kilometers). This pattern is well-known, but unexplained, and remains an outstanding problem in our understanding of porphyry ore deposit formation. We approach this problem by investigating the oxidation state of magmatic sulfur, which controls the behavior of ore-forming metals during magma differentiation and magmatic-hydrothermal transition. We use sulfur in apatite to reconstruct the sulfur oxidation state in the Gangdese batholith, southern Tibet. We find that magma sulfate content increased abruptly after India-Eurasia collision. Apatite sulfur content and the calculated magma S 6+ /ΣS ratio correlate with whole-rock dysprosium/ytterbium ratio, suggesting that residual garnet, favored in thickened crust, exerts a first-order control on sulfur oxidation in magmatic orogens. Our findings link sulfur oxidation to internal petrogenic processes and imply an intrinsic relationship of magma oxidation with synmagmatic crustal thickening. more »« less
Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalitemagnetite- quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.
Sodic volcano-plutonic terranes in the Archean can be well preserved, but why oxidized S-rich sodic magmas and porphyry-type Cu-Au deposits are so rare remains poorly understood. Here we addressed this issue by measuring the S concentration and S6+/ΣS ratio of primary apatite grains in >2.7 Ga felsic volcanic rocks from the well-characterized Neoarchean Abitibi Greenstone Belt of the Superior Province, Canada. Whereas apatite grains in most samples contain low-S concentrations (<0.01 wt%, n = 24), a few apatite samples are S-rich (0.14 ± 0.03 wt%, 1σ) and have low-S6+/ΣS ratios (0.56 ± 0.17; 1σ, n = 4). Samples with S-poor apatite have variable whole-rock La/Yb ratios (generally <30) and zircon 10 000*(Eu/Eu*)/Yb ratios of 11 ± 8 (1σ), which may be products of plume-driven or over-thickened crustal melting. In contrast, the samples with S-rich apatite have elevated La/Yb ratios of 49 ± 15 (1σ), zircon 10 000*(Eu/EuN*)/Yb ratios of 26 ± 7 (1σ), and zircon δ18O values of 5.8 ± 0.1 ‰ (1σ), consistent with a deep, hydrous and homogeneous mantle-like source for the melts dominated by amphibole ± garnet fractionation that is reminiscent of subduction-like process. These are the first reported results documenting the predominant accommodation of relatively reduced S in S-rich apatite grains crystallized from terrestrial silicate melts, possibly reflecting slight oxidation associated with the hydration of Neoarchean mantle and crystal fractionation over the magma evolution. The more common S-poor apatite data suggest that suppressed oxidation of the parental sodic magmas led to weak S emission from Earth’s interior to its evolving surface, explaining the rarity of porphyry-type Cu deposits in >2.7 Ga Archean sodic volcano-plutonic terranes.
The oxidation state of the Earth’s mantle and its partial melting products exert a key control on the behavior and distribution of sulfur and chalcophile and siderophile elements between the mantle and crust, underpinning models of ore deposit formation. Whether the oxidized nature of magmas is inherited from the asthenospheric mantle source or acquired during ascent and differentiation is vigorously debated, limiting our understanding of the mechanisms of extraction of sulfur and metals from the mantle. Here, we focused on the redox-sensitive behavior of sulfur in apatite crystallized from quenched alkaline basaltic melts preserved within a peridotite xenolith from the El Deseado Massif auriferous province in southern Patagonia. We took advantage of this unique setting to elucidate the redox evolution of melts during their ascent through the subcontinental lithospheric mantle (SCLM) and grasp the inner workings of the Earth’s mantle during gold metallogenesis. Our data reveal that an initially reduced silicate melt (1FMQ 2.2 to 1.2) was oxidized to 1FMQ between 0 and 1.2 during percolation and interaction with the surrounding peridotite wall-rock (1FMQ 0 to C0.8). This process triggered changes in sulfur speciation and solubility in the silicate melt, boosting the potential of the melt to scavenge ore metals such as gold. We suggest that large redox gradients resulting from the interaction between ascending melts and the surrounding mantle can potentially modify the oxidation state of primitive melts and enhance their metallogenic fertility. Among other factors including an enriched metal source and favorable geodynamic conditions, redox gradients in the mantle may exert a first-order control on the global-scale localization of crustal provinces endowed with gold deposits.
Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures.
Romero, R; Barra, F; Reich, M; Ojeda, A; Tapia, M J; del_Real, I; Simon, A
(, Scientific Reports)
Iron oxide-copper-gold (IOCG) deposits are a vital source of copper and critical elements for emerging clean technologies. Andean-type IOCG deposits form in continental arcs undergoing extension, and they have a temporal relationship with magmatism although they do not exhibit a close spatial relation with the causative intrusions. The processes required to form IOCG deposits and their potential connections to iron oxide–apatite (IOA)-type mineralization remain poorly constrained, as well as the characteristics of magmatism linked to both deposit types. Here we combine zircon U–Pb geochronology with zircon trace element geochemistry of intrusive rocks associated with the Candelaria deposit, one of the world’s largest IOCG deposits, to unravel distinctive signatures diagnostic of magmatic fertility. Our results reveal a marked transition in the geochemistry of intrusions in the Candelaria district, characterized by changes in the redox state, water content and temperature of magmas over time. The oldest magmatic stage (~ 128–125 Ma), prior to the formation of the Candelaria deposit, was characterized by zircon Eu/Eu* ratios of 0.20–0.42, and redox conditions of ΔFMQ − 0.4 to + 1.0. The earliest magmatic stage related to the formation of Fe-rich mineralization at Candelaria (118–115 Ma) exhibits low zircon Eu/Eu* ratios (0.09–0.18), low oxygen fugacity values (ΔFMQ ~− 1.8 to + 0.2) and relatively high crystallization temperatures. In contrast, the youngest stage at ~ 111–108 Ma shows higher zircon Eu/Eu* (~ 0.37–0.69), higher oxygen fugacity values (ΔFMQ ~ + 0.4 to + 1.3) and a decrease in crystallization temperatures, conditions that are favorable for the transport and precipitation of sulfur and chalcophile elements. We conclude that Candelaria was formed through two distinct ore-forming stages: the first associated with a reduced, high temperature, water-poor magma developed under a low tectonic stress, followed by a more oxidized, water-rich, and low temperature magmatic event related to a compressional regime. The first event led to Fe-rich and S-poor IOA-type mineralization, while the second event with geochemical signatures similar to those of porphyry copper systems, generated the Cu- and S-rich mineralization. This late stage overprinted preexisting IOA mineralization resulting in the formation of the giant Candelaria IOCG deposit.
Tang, Ming, Lee, Cin-Ty A., Ji, Wei-Qiang, Wang, Rui, and Costin, Gelu. Crustal thickening and endogenic oxidation of magmatic sulfur. Retrieved from https://par.nsf.gov/biblio/10198869. Science Advances 6.31 Web. doi:10.1126/sciadv.aba6342.
@article{osti_10198869,
place = {Country unknown/Code not available},
title = {Crustal thickening and endogenic oxidation of magmatic sulfur},
url = {https://par.nsf.gov/biblio/10198869},
DOI = {10.1126/sciadv.aba6342},
abstractNote = {Porphyry ore deposits, Earth’s most important resources of copper, molybdenum, and rhenium, are strongly associated with felsic magmas showing signs of high-pressure differentiation and are usually found in places with thickened crust (>45 kilometers). This pattern is well-known, but unexplained, and remains an outstanding problem in our understanding of porphyry ore deposit formation. We approach this problem by investigating the oxidation state of magmatic sulfur, which controls the behavior of ore-forming metals during magma differentiation and magmatic-hydrothermal transition. We use sulfur in apatite to reconstruct the sulfur oxidation state in the Gangdese batholith, southern Tibet. We find that magma sulfate content increased abruptly after India-Eurasia collision. Apatite sulfur content and the calculated magma S 6+ /ΣS ratio correlate with whole-rock dysprosium/ytterbium ratio, suggesting that residual garnet, favored in thickened crust, exerts a first-order control on sulfur oxidation in magmatic orogens. Our findings link sulfur oxidation to internal petrogenic processes and imply an intrinsic relationship of magma oxidation with synmagmatic crustal thickening.},
journal = {Science Advances},
volume = {6},
number = {31},
author = {Tang, Ming and Lee, Cin-Ty A. and Ji, Wei-Qiang and Wang, Rui and Costin, Gelu},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.