skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin–orbit torque nano-oscillator with giant magnetoresistance readout
Abstract Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic and nonmagnetic metals are ultra-compact current-controlled microwave signal sources. They are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance of the ferromagnetic layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be significantly enhanced without compromising its structural simplicity. Addition of a ferromagnetic reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of giant magnetoresistance compared to that of anisotropic magnetoresistance and their different angular dependencies. Our results hold promise for practical applications of spin-orbit torque nano-oscillators.  more » « less
Award ID(s):
1708885 1641989
PAR ID:
10198944
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
3
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spin-orbit torques in ferromagnet/nonmagnet/ferromagnet trilayers are studied using a combination of symmetry analysis, circuit theory, semiclassical simulations, and first-principles calculations using the nonequilibrium Green's function method with supercell disorder averaging. We focus on unconventional processes involving the interplay between the two ferromagnetic layers, which are classified into direct and indirect mechanisms. The direct mechanism involves spin current generation by one ferromagnetic layer and its subsequent absorption by the other. In the indirect mechanism, the in-plane spin-polarized current from one ferromagnetic layer “leaks” into the other layer, where it is converted into an out-of-plane spin current and reabsorbed by the original layer. The direct mechanism results in a predominantly dampinglike torque, which damps the magnetization towards a certain direction 𝐬_𝑑. The indirect mechanism results in a predominantly fieldlike torque with respect to a generally different direction 𝐬_𝑓. Similarly to the current-in-plane giant magnetoresistance, the indirect mechanism is only active if the thickness of the nonmagnetic spacer is smaller than or comparable to the mean free path. Numerical calculations for a semiclassical model based on the Boltzmann equation confirm the presence of both direct and indirect mechanisms of spin current generation. First-principles calculations reveal sizable unconventional spin-orbit torques in Co/Cu/Co, Py/Cu/Py, and Co/Pt/Co trilayers and provide strong evidence of indirect spin current generation. 
    more » « less
  2. Spin-torque ferromagnetic resonance (ST-FMR) has been widely used for measuring damping-like spin–orbit torques in magnetic bilayers. Typically, the ratio between the damping-like and field-like spin–orbit torques are extrapolated based on the ferromagnetic resonance line shapes. However, when the field-like spin–orbit torque is unknown, the line shape analysis may lead to errors in extrapolating the damping-like spin–orbit torque. Here, we propose a modified version of the ST-FMR that allows extrapolation of both damping-like and field-like torques independently. By introducing an alternating current to the sample, the RF impedance is modulated, allowing detection via the reflected microwave. We show that the extrapolated field-like and damping-like torques in Py/Pt samples are consistent with the technique measuring current-induced linewidth and resonance field change but have much better signal-to-noise ratio. Our proposed method paves a way for more accurate measurement of spin–orbit torques. 
    more » « less
  3. Abstract Giant spin-orbit torque (SOT) from topological insulators (TIs) provides an energy efficient writing method for magnetic memory, which, however, is still premature for practical applications due to the challenge of the integration with magnetic tunnel junctions (MTJs). Here, we demonstrate a functional TI-MTJ device that could become the core element of the future energy-efficient spintronic devices, such as SOT-based magnetic random-access memory (SOT-MRAM). The state-of-the-art tunneling magnetoresistance (TMR) ratio of 102% and the ultralow switching current density of 1.2 × 105 A cm−2have been simultaneously achieved in the TI-MTJ device at room temperature, laying down the foundation for TI-driven SOT-MRAM. The charge-spin conversion efficiencyθSHin TIs is quantified by both the SOT-induced shift of the magnetic switching field (θSH = 1.59) and the SOT-induced ferromagnetic resonance (ST-FMR) (θSH = 1.02), which is one order of magnitude larger than that in conventional heavy metals. These results inspire a revolution of SOT-MRAM from classical to quantum materials, with great potential to further reduce the energy consumption. 
    more » « less
  4. Efficient manipulation of antiferromagnetically coupled materials that are integration-friendly and have strong perpendicular magnetic anisotropy (PMA) is of great interest for low-power, fast, dense magnetic storage and computing. Here, we report a distinct, giant bulk damping-like spin–orbit torque in strong-PMA ferrimagnetic Fe 100− x Tb x single layers that are integration-friendly (composition-uniform, amorphous, and sputter-deposited). For sufficiently thick layers, this bulk torque is constant in the efficiency per unit layer thickness, [Formula: see text]/ t, with a record-high value of 0.036 ± 0.008 nm −1 , and the damping-like torque efficiency [Formula: see text] achieves very large values for thick layers, up to 300% for 90 nm layers. This giant bulk torque by itself switches tens of nm thick Fe 100− x Tb x layers that have very strong PMA and high coercivity at current densities as low as a few MA/cm 2 . Surprisingly, for a given layer thickness, [Formula: see text] shows strong composition dependence and becomes negative for composition where the total angular momentum is oriented parallel to the magnetization rather than antiparallel. Our findings of giant bulk spin torque efficiency and intriguing torque-compensation correlation will stimulate study of such unique spin–orbit phenomena in a variety of ferrimagnetic hosts. This work paves a promising avenue for developing ultralow-power, fast, dense ferrimagnetic storage and computing devices. 
    more » « less
  5. Spin Torque Oscillators (STOs) are promising solutions in a wide variety of next generation technologies from read-head sensors in high-density magnetic recording technology to neural oscillator units for neuromorphic computing. There are several metrics that can be used to quantify the performance of an STO such as power, quality factor, frequency tunability, etc., most of which are dependent on the design of the STO device itself. Furthermore, determining the most important metric will be contingent on its desired application, meaning that it is crucial to understand how the STOs design parameters influence all aspects of its performance so that its design can be optimized to perform the desired function. In this work, we analyzed spin torque oscillations generated from 20 magnetic tunnel junctions with in-plane anisotropy and patterned into elliptical nano-pillars with a wide range of sizes and aspect ratios. For each device, we acquired 20 to 50 data sets at various bias fields and currents and used power spectral density plots to measure output power, frequency, linewidth, quality factor, and power-to-linewidth ratio for each set. We also analyzed each STOs performance in terms of the bias fields and bias currents required to maximize output power and signal quality as well as the frequency tunability with both field and current. By comparing all of these performance metrics between the 20 STOs tested, we studied the influence of device size and shape on all aspects of STO performance and used correlation coefficients to quantify relative magnitude of these effects. 
    more » « less