skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1708885

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic and nonmagnetic metals are ultra-compact current-controlled microwave signal sources. They are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance of the ferromagnetic layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be significantly enhanced without compromising its structural simplicity. Addition of a ferromagnetic reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of giant magnetoresistance compared to that of anisotropic magnetoresistance and their different angular dependencies. Our results hold promise for practical applications of spin-orbit torque nano-oscillators.

     
    more » « less
  2. Abstract

    Spin Hall oscillators (SHO) are promising candidates for the generation, detection and amplification of high frequency signals, that are tunable through a wide range of operating frequencies. They offer to be read out electrically, magnetically and optically in combination with a simple bilayer design. Here, we experimentally study the spatial dependence and spectral properties of auto-oscillations in SHO devices based on Pt(7 nm)/Ni80Fe20(5 nm) tapered nanowires. Using Brillouin light scattering microscopy, we observe two individual self-localized spin-wave bullets that oscillate at two distinct frequencies (5.2 GHz and 5.45 GHz) and are localized at different positions separated by about 750 nm within the SHO. This state of a tapered SHO has been predicted by a Ginzburg-Landau auto-oscillator model, but not yet been directly confirmed experimentally. We demonstrate that the observed bullets can be individually synchronized to external microwave signals, leading to a frequency entrainment, linewidth reduction and increase in oscillation amplitude for the bullet that is selected by the microwave frequency. At the same time, the amplitude of other parasitic modes decreases, which promotes the single-mode operation of the SHO. Finally, the synchronization of the spin-wave bullets is studied as a function of the microwave power. We believe that our findings promote the realization of extended spin Hall oscillators accomodating several distinct spin-wave bullets, that jointly cover an extended range of tunability.

     
    more » « less
  3. We present a joint experimental and theoretical study of parametric resonance of spin wave eigenmodes in Ni80Fe20/Pt bilayer nanowires. Using electrically detected magnetic resonance, we measure the spectrum of spin wave eigenmodes in transversely magnetized nanowires and study parametric excitation of these eigenmodes by a microwave magnetic field. We also develop an analytical theory of spin wave eigenmodes and their parametric excitation in the nanowire geometry that takes into account magnetic dilution at the nanowire edges. We measure tuning of the parametric resonance threshold by antidamping spin Hall torque from a direct current for the edge and bulk eigenmodes, which allows us to independently evaluate frequency, damping and ellipticity of the modes. We find good agreement between theory and experiment for parametric resonance of the bulk eigenmodes but signifi cant discrepancies arise for the edge modes. The data reveals that ellipticity of the edge modes is signifi cantly lower than expected, which can be attributed to strong modi fication of magnetism at the nanowire edges. Our work demonstrates that parametric resonance of spin wave eigenmodes is a sensitive probe of magnetic properties at edges of thin-fi lm nanomagnets. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    The momentum and spin of charge carriers in the topological insulators are constrained to be perpendicular to each other due to the strong spin–orbit coupling. We have investigated this unique spin–momentum locking property in Sb 2 Te 3 topological insulator nanowires by injecting spin-polarized electrons through magnetic tunnel junction electrodes. Non-local voltage measurements exhibit an asymmetry with respect to the magnetic field applied perpendicular to the nanowire channel, which is remarkably different from that of a non-local measurement in a channel that lacks spin–momentum locking. In stark contrast to conventional non-local spin valves, simultaneous reversal of magnetic moments of all magnetic contacts to the Sb 2 Te 3 nanowire alters the non-local voltage. This unusual asymmetry is a clear signature of the spin–momentum locking in the Sb 2 Te 3 nanowire surface states. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)