Block-based programming languages reduce the need to learn low-level programming syntax while enabling novice learners to focus on computational thinking skills. Game-based learning environments have been shown to create effective and engaging learning experiences for students in a broad range of educational domains. The fusion of block-based programming with game-based learning offers significant potential to motivate learners to develop computational thinking skills. A key challenge educational game developers face in creating rich, interactive learning experiences that integrate computational thinking activities is the lack of an embeddable block-based programming toolkit. Current block-based programming languages, such as Blockly and Scratch, cannot be easily embedded into industry-standard 3D game engines. This paper presents IntelliBlox, a Blockly-inspired toolkit for the Unity cross-platform game engine that enables learners to create block-based programs within immersive game-based learning environments. Our experience using IntelliBlox suggests that it is an effective toolkit for integrating block-based programming challenges into game-based learning environments.
more »
« less
Building Blocks: Kids Designing scientific, domain-specific, block- based, agent-based microworlds
Next Generation Science Standards foreground science practices as important goals of science education. In this paper, we discuss the design of block-based modeling environments for learning experiences that ask students to actively explore complex systems via computer programming. Specifically, we discuss the implications of the design and selection of the types of blocks given to learners in these environments and how they may affect students’ thinking about the process of modeling and theorizing. We conclude with a discussion of some preliminary findings in this design based research to inform design principles for block-based programming of science phenomena as a medium for learning to build theory.
more »
« less
- PAR ID:
- 10199201
- Date Published:
- Journal Name:
- International Conference of the Learning Sciences (2020)
- Issue:
- Jun-2020
- Page Range / eLocation ID:
- 1641-1644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rajala, A; Cortez, A; Hofmann, R; Jornet, A; Lotz-Sisitka, H; Markauskaite, L (Ed.)Not AvailableEngaging with computational models is central to both scientific and computational learning. A promising approach to “lower the floor” and make computational modeling more accessible is the development of domain-specific and block-based environments, which reduce programming complexity while leveraging students’ intuitions about scientific ideas. To balance usability and expressiveness in these environments, we develop the feature of “unpacking” blocks, allowing users to open and modify high-level blocks into the simpler constituent elements that define them. In this study, we analyze high school students’ models, screen recordings, and artifact-based interviews to investigate their motivation for modifying domain-specific blocks for eutrophication in aquatic ecosystems. We found that unpacking and modifying blocks supported students in both exploring scientific ideas and addressing specific goals of computational modeling, providing insights on how unpacking domain-specific blocks can support both computing and science learning.more » « less
-
Recent years have seen a growing recognition of the importance of enabling K-12 students to engage in computational thinking, particularly in elementary grades where students' dispositions toward STEM are developing. Block-based programming has emerged as an effective tool for engaging these novice learners in computational thinking. At the same time, digital storytelling has emerged as a promising avenue for creating motivating problem-solving scenarios that engage students in science investigations. Although block-based programming and digital storytelling are in many ways synergistic, there is a lingering question of how to design block-based languages at an age-appropriate level to enable effective and engaging storytelling. In this work, we review design principles from prior block-based and digital storytelling systems as well as propose the design of block-based programming language features to enable the creation of rich, interactive science narratives by upper elementary students.more » « less
-
Recent years have seen growing interest in utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities in K-12 education. At the same time, there is increasing awareness of the need to engage students as young as elementary school in complex topics such as physical science and computational thinking. Building on previous research investigating block-based programming activities for storytelling, we present an approach to block-based programming for interactive digital storytelling to engage upper elementary students (ages 9 to 10) in computational thinking and narrative skill development. We describe both the learning environment that combines block-based narrative programming with a rich, interactive visualization engine designed to produce animations of student generated stories, as well as an analysis of students using the system to create narratives. Student generated stories are evaluated from both a story quality perspective as well as from their ability to communicate and demonstrate computational thinking and physical science concepts and practices. We also explore student behaviors during the story creation process and discuss potential improvements for future interventions.more » « less
-
null (Ed.)Developing narrative and computational thinking skills is crucial for K-12 student learning. A growing number of K-12 teachers are utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities for a variety of domains, including history and science. At the same time, there is increasing awareness of the need to engage K-12 students in computational thinking, including elementary school students. Given the challenges that the syntax of text-based programming languages poses for even novice university-level learners, block-based programming languages have emerged as an effective tool for introducing computational thinking to elementary-level students. Leveraging the unique affordances of narrative and computational thinking offers significant potential for student learning; however, integrating them presents significant challenges. In this paper, we describe initial work toward solving this problem by introducing an approach to block-based programming for interactive storytelling to engage upper elementary students (ages 9 to 11) in computational thinking and narrative skill development. Leveraging design principles and best practices from prior research on elementary-grade block-based programming and digital storytelling, we propose a set of custom blocks enabling learners to create interactive narratives. We describe both the process used to derive the custom blocks, including their alignment with elements of interactive narrative and with specific computational thinking curricular goals, as well as lessons learned from students interacting with a prototype learning environment utilizing the block-based programming approach.more » « less
An official website of the United States government

