skip to main content


Title: Designing Computational Models as Emergent Systems Microworlds to Support Learning of Scientific Inquiry
Emergent Systems Microworlds (ESMs) are a special kind of computational models. Design of ESMs involves a combination of two approaches in Learning Sciences, namely agent-based modelling of complex systems and constructionism. ESMs and ESM-based curricula are frameworks for designing learning environments to foster the learning of complex scientific phenomena by engaging students in authentic scientific inquiry practices. In this paper, we discuss our approach in the context of an ESM called GenEvo that we designed for the learning of molecular genetics and evolution. We further discuss how agent-based representations and constructionist design principles mediated students’ expansive learning, as students collaboratively con- structed knowledge by engaging in authentic scientific inquiry practices.  more » « less
Award ID(s):
1842374 1640201
NSF-PAR ID:
10199202
Author(s) / Creator(s):
;
Date Published:
Journal Name:
eipSTEM8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaching science inquiry practices, especially the more contemporary ones, such as computational thinking practices, requires designing newer learning environments and appropriate pedagogical scaffolds. Using such learning environments, when students construct knowledge about disciplinary ideas using inquiry practices, it is important that they make connections between the two. We call such connections epistemic connections, which are about constructing knowledge using science inquiry practices. In this paper, we discuss the design of a computational thinking integrated biology unit as an Emergent Systems Microworlds (ESM) based curriculum. Using Epistemic Network Analysis, we investigate how the design of unit support students’ learning through making epistemic connections. We also analyze the teacher’s pedagogical moves to scaffold making such connections. This work implies that to support students’ epistemic connections between science inquiry practices and disciplinary ideas, it is critical to design restructured learning environments like ESMs, aligned curricular activities and provide appropriate pedagogical scaffolds. 
    more » « less
  2. Abstract

    Science education frameworks in the United States have moved strongly in recent years to incorporate more dimensions of learning, including measuring student use of scientific practices employed during scientific inquiry. For instance, the Next Generation Science Standards and related multidimensional frameworks adopted or adapted recently by more than 30 United States include numerous complex science performance skills required of students. This article considers whether valid and reliable evidence can be obtained in online performance tasks to yield an estimate of both student inquiry practices and of the ability of students to explain their understanding of scientific concepts. A data set from a Virtual Performance Assessment (VPA) task,There's a New Frog in Town, is examined. Delivered through an online system, the VPA task engages students in guided inquiry through problem solving, modeling, and exploration. The VPAs are designed to produce evidence on more than one latent trait in the respondent performance. Results of the case study reported here indicated that maps of student proficiency in scientific inquiry were possible to generate from the VPA data set, using measurement models. Addition of process data through a new hybrid measurement model, mIRT‐Bayes, improved reliability of results. Results indicated overall that virtual performance tasks may be helpful for science assessment, especially if assessment time is short and a goal is to increase the validity and quality of performance measures with authentic and engaging virtual activities.

     
    more » « less
  3. Ecosystem response to hurricane disturbance is complex and multi-faceted. The likelihood of increased frequency of severe hurricanes creates a need for the general public to understand how ecosystems respond to hurricanes. Yet, opportunities to study disturbances to complex systems are rare in U.S. K–12 schools. Educators and researchers in the Luquillo Long-Term Ecological Research program used the results of research on ecosystem response to hurricane disturbance in the Luquillo Experimental Forest as a foundation for the development of Journey to El Yunque, a web-based, middle-school curriculum unit. The program engages students in using models as evidence to develop explanations for how particular species respond to hurricane disturbance. Prior research in education has shown that engaging students in a particular role, like that of a scientist, could have detrimental effects on students’ abilities to transfer what is learned from one context to another. In this research, we sought to understand whether having students engage in authentic scientific practices could support transfer of knowledge to the abstract context of a standards-based assessment. Students were randomly assigned to engage in the program in the role of a scientist or in the role of a student learning about an ecosystem. The dependent variables included students’ comprehension of the background readings, their predictions of population changes, and their overall learning of ecology. The results indicate that taking on a scientist role during the learning activities had an indirect effect on general ecology knowledge by increasing the quality of students’ notetaking during background reading. The results also indicate that students struggled to use their knowledge to develop a robust explanation for how species respond to hurricane disturbance. Journey to El Yunque provides a framework for engaging students in authentic investigations of hurricane disturbance. Future research will examine how to improve the quality of students’ final explanations. 
    more » « less
  4. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)
    I describe the design and implementation of a series of university MSc courses in Switzerland and in Italy on the topic of “Cosmic Structure Formation” whose goal has been to provide to the students a formative experience using interwoven research practice and fundamental scientific content. The course educational framework, which is based on the ISEE Inquiry Framework, emphasizes science, as much in teaching as in research, as a set of practices, re-discovering and actualizing in modern terms the original pivotal role which these practices had in education in ancient times. In particular, the courses focus on formative, intuitive, student-centered and dialogic learning in opposition to the informative, mnemonic, teacher-centered and monologic teaching of frontal lecture-based instruction, which is still the dominant teaching framework in university education, at least in Europe. I describe how course activities are designed in such a way as to mirror authentic research, including all aspects which are usually not practiced in lecture-based courses and “standard” laboratories (e.g., generating and refining questions; making and testing assumptions; developing one’s own research path; and sharing, explaining and justifying ideas and results with peers). Finally, I discuss the major outcomes of the courses and the main challenges which were faced in order to provide to the students a truly transformative experience which could allow them to improve both as learners and future scientific researchers, as well as members of a larger community. 
    more » « less
  5. As educators and researchers, we often enjoy enlivening classroom discussions by including examples of cutting-edge high-throughput (HT) technologies that propelled scientific discovery and created repositories of new information. We also call for the use of evidence-based teaching practices to engage students in ways that promote equity and learning. The complex datasets produced by HT approaches can open the doors to discovery of novel genes, drugs, and regulatory networks, so students need experience with the effective design, implementation, and analysis of HT research. Nevertheless, we miss opportunities to contextualize, define, and explain the potential and limitations of HT methods. One evidence-based approach is to engage students in realistic HT case studies. HT cases immerse students with messy data, asking them to critically consider data analysis, experimental design, ethical implications, and HT technologies.The NSF HITS (High-throughput Discovery Science and Inquiry-based Case Studies for Today’s Students) Research Coordination Network in Undergraduate Biology Education seeks to improve student quantitative skills and participation in HT discovery. Researchers and instructors in the network learn about case pedagogy, HT technologies, publicly available datasets, and computational tools. Leveraging this training and interdisciplinary teamwork, HITS participants then create and implement HT cases. Our initial case collection has been used in >15 different courses at a variety of institutions engaging >600 students in HT discovery. We share here our rationale for engaging students in HT science, our HT cases, and network model to encourage other life science educators to join us and further develop and integrate HT complex datasets into curricula. 
    more » « less