Title: Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials
The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the synthesis of high-performance sulfur-based plastics with improved optical, electrochemical, and mechanical properties aimed at applications in thermal imaging, energy storage, self-healable materials, and separation science. In this Perspective, we discuss efforts in the past decade that have revived this area of organosulfur and polymer chemistry to afford a new class of high-sulfur-content polymers prepared from the polymerization of liquid sulfur with unsaturated monomers, termed inverse vulcanization. more »« less
Karunarathna, Menisha S.; Lauer, Moira K.; Smith, Rhett C.
(, Journal of Materials Chemistry A)
null
(Ed.)
A simple approach to a high sulfur-content material from biomass-derived guaiacol and waste sulfur is introduced. This direct reaction of elemental sulfur with an anisole derivative lacking olefins or halogen leaving groups expands the monomer scope beyond existing routes to high sulfur-content materials.
Kang, Kyung‐Seok; Phan, Anthony; Olikagu, Chisom; Lee, Taeheon; Loy, Douglas A.; Kwon, Minho; Paik, Hyun‐jong; Hong, Seung Jae; Bang, Joona; Parker, Jr., Wallace O.; et al
(, Angewandte Chemie International Edition)
Abstract The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high‐performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi‐block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur‐based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13–24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.
Cron, Brandi; Macalady, Jennifer L.; Cosmidis, Julie
(, Frontiers in Microbiology)
This work shines light on the role of extracellular polymeric substance (EPS) in the formation and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria. We characterized elemental sulfur particles produced within a Sulfurovum -rich biofilm in the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal morphologies, and display both stable (α-S 8 ) and metastable (β-S 8 ) crystal structures. Elemental sulfur is embedded within a dense matrix of EPS, and the particles are surrounded by organic envelopes rich in amide and carboxylic groups. Organic encapsulation and the presence of metastable crystal structures are consistent with elemental sulfur organomineralization, i.e., the formation and stabilization of elemental sulfur in the presence of organics, a mechanism that has previously been observed in laboratory studies. This research provides new evidence for the important role of microbial EPS in mineral formation in the environment. We hypothesize that the extracellular organics are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside of the cell wall as a store of chemical energy. The stabilization of energy sources (in the form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that requires further investigation.
The preparation of sulfur containing polymers from inexpensive, commodity sulfur base chemicals is an emerging field of polymer chemistry as a route to consume elemental sulfur generated from fossil fuel refining. Recently a new process, termed, sulfenyl chloride inverse vulcanization has been developed that exploits the high reactivity and miscibility of sulfur monochloride, (S2Cl2) with a broad range of allylic monomers to prepare soluble, high molar mass linear polymers, segmented block copolymers and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization with elemental sulfur. However, the ring opening of episulfonium intermediates from this polymerization can proceed via Markovnikov, anti-Markovnikov, or alternative pathways resulting in complex regioisomeric microstructures, particularly when used with allylic ester monomers. Hence, to accelerate structural characterization of this new class of polyhalodisulfides prepared by the sulfenyl chloride inverse vulcanization process, we report on a detailed structural characterization to quantify the molar composition of regioisomeric units in these materials using NMR spectroscopy,focusing on sulfenyl chloride additions to allylic benzoate substrates. We report on a general methodologyusing one- and two-dimensional NMR spectroscopic techniques to enable direct integration of 2D NMRspectroscopic cross peaks to quantify the molar composition of regioisomeric units in 1,3-diallyl isophthalate(DAI) polymerized with S2Cl2, along with detailed studies on model compound reactions to detail the analytical methodology.
Kapuge_Dona, Nawoda_L; Maladeniya, Charini_P; Smith, Rhett_C
(, European Journal of Organic Chemistry)
Abstract Lignocellulosic biomass remains underutilized despite its annual production in gigaton quantities. Sulfur is another vastly underutilized waste product of fossil fuel refining. New mechanistic insight into the reactions of sulfur unveiled since 2020 suggest a rich and hitherto unexplored chemistry between biomass‐derived olefins and elemental sulfur. In this study, four biomass‐derived olefins (eugenol (1), 4‐allyl‐2,6‐dimethoxyphenol (2),o‐eugenol (3), and 2‐allyl‐6‐methylphenol(4)) were reacted with elemental sulfur to elucidate the S−C bond‐forming and other reactivity of these compounds. Each of the compounds was reacted with elemental sulfur in three sulfur : organic reactant ratios (2 : 1, 4 : 1 and 9 : 1) and at two temperatures (180 °C or 230 °C). Product mixtures were characterized using1H NMR spectrometry and GC‐MS analysis. Products resulting from a range of mechanisms were unveiled, including inverse vulcanization, S−Callylic/benzylicbond formation, S−Carylbond formation, intramolecular cyclization, C−C σ‐bond scission, and C−O σ‐bond scission. It is anticipated that the insights from this study will support further synergy between the critical sustainability goals of biomass and sulfur utilization.
Lee, Taeheon, Dirlam, Philip T., Njardarson, Jon T., Glass, Richard S., and Pyun, Jeffrey. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. Retrieved from https://par.nsf.gov/biblio/10312346. Journal of the American Chemical Society . Web. doi:10.1021/jacs.1c09329.
Lee, Taeheon, Dirlam, Philip T., Njardarson, Jon T., Glass, Richard S., & Pyun, Jeffrey. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. Journal of the American Chemical Society, (). Retrieved from https://par.nsf.gov/biblio/10312346. https://doi.org/10.1021/jacs.1c09329
Lee, Taeheon, Dirlam, Philip T., Njardarson, Jon T., Glass, Richard S., and Pyun, Jeffrey.
"Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials". Journal of the American Chemical Society (). Country unknown/Code not available. https://doi.org/10.1021/jacs.1c09329.https://par.nsf.gov/biblio/10312346.
@article{osti_10312346,
place = {Country unknown/Code not available},
title = {Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials},
url = {https://par.nsf.gov/biblio/10312346},
DOI = {10.1021/jacs.1c09329},
abstractNote = {The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the synthesis of high-performance sulfur-based plastics with improved optical, electrochemical, and mechanical properties aimed at applications in thermal imaging, energy storage, self-healable materials, and separation science. In this Perspective, we discuss efforts in the past decade that have revived this area of organosulfur and polymer chemistry to afford a new class of high-sulfur-content polymers prepared from the polymerization of liquid sulfur with unsaturated monomers, termed inverse vulcanization.},
journal = {Journal of the American Chemical Society},
author = {Lee, Taeheon and Dirlam, Philip T. and Njardarson, Jon T. and Glass, Richard S. and Pyun, Jeffrey},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.