The coastal circulation around Southern Greenland transports fresh, buoyant water masses from the Arctic and Greenland Ice Sheet near regions of convection, sinking, and deep-water formation in the Irminger and Labrador Seas. Here, we track the pathways and fate of these fresh water masses by initializing synthetic particles in the East Greenland Coastal Current on the Southeast Greenland shelf and running them through altimetry-derived surface currents from 1993 to 2021. We report that the majority of waters (83%) remain on the shelf around the southern tip of Greenland. Variability in the shelf-basin exchange of the remaining particles closely follows the number of tip jet wind events on seasonal and interannual timescales. The probability of a particle exiting the shelf increases almost fivefold during a tip jet event. These results indicate that the number of tip jets is a close proxy of the shelf-basin exchange around Southern Greenland.
more »
« less
A continuous pathway for fresh water along the East Greenland shelf
Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell.
more »
« less
- PAR ID:
- 10199297
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 43
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabc4254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Greenland Ice Sheet is losing mass at an accelerating pace, increasing its contribution to the freshwater input into the Nordic Seas and the subpolar North Atlantic. It has been proposed that this increased freshwater may impact the Atlantic Meridional Overturning Circulation by affecting the stratification of the convective regions of the North Atlantic and Nordic Seas. Observations of the transformation and pathways of meltwater from the Greenland Ice Sheet on the continental shelf and in the gyre interior, however, are lacking. Here, we report on noble gas derived observations of submarine meltwater distribution and transports in the East and West Greenland Current Systems of southern Greenland and around Cape Farewell. In southeast Greenland, submarine meltwater is concentrated in the East Greenland Coastal Current core with maximum concentrations of 0.8%, thus significantly diluted relative to fjord observations. It is found in water with density ranges from 1,024 to 1027.2 kg m−3and salinity from 30.6 to 34, which extends as deep as 250 m and as far offshore as 60 km on the Greenland shelf. Submarine meltwater transport on the shelf averages 5.0 ± 1.6 mSv which, if representative of the mean annual transport, represents 60%–80% of the total solid ice discharge from East Greenland and suggests relatively little offshore export of meltwater east and upstream of Cape Farewell. The location of the meltwater transport maximum shifts toward the shelfbreak around Cape Farewell, positioning the meltwater for offshore flux in regions of known cross‐shelf exchange along the West Greenland coast.more » « less
-
null (Ed.)Abstract Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep.more » « less
-
Abstract We present the first continuous mooring records of the West Greenland Coastal Current (WGCC), a conduit of fresh, buoyant outflow from the Arctic Ocean and the Greenland Ice Sheet. Nearly two years of temperature, salinity, and velocity data from 2018 to 2020 demonstrate that the WGCC on the southwest Greenland shelf is a well-formed current distinct from the shelfbreak jet but exhibits strong chaotic variability in its lateral position on the shelf, ranging from the coastline to the shelf break (50 km offshore). We calculate the WGCC volume and freshwater transports during the 35% of the time when the mooring array fully bracketed the current. During these periods, the WGCC remains as strong (0.83 ± 0.02 Sverdrups; 1 Sv ≡ 106m3s−1) as the East Greenland Coastal Current (EGCC) on the southeast Greenland shelf (0.86 ± 0.05 Sv) but is saltier than the EGCC and thus transports less liquid freshwater (30 × 10−3Sv in the WGCC vs 42 × 10−3Sv in the EGCC). These results indicate that a significant portion of the liquid freshwater in the EGCC is diverted from the coastal current as it rounds Cape Farewell. We interpret the dominant spatial variability of the WGCC as an adjustment to upwelling-favorable wind forcing on the West Greenland shelf and a separation from the coastal bathymetric gradient. An analysis of the winds near southern Greenland supports this interpretation, with nonlocal winds on the southeast Greenland shelf impacting the WGCC volume transport more strongly than local winds over the southwest Greenland shelf.more » « less
-
Abstract As the only oceanic connection between the Pacific and Arctic‐Atlantic Oceans, Bering Strait throughflow carries a climatological northward transport of about 1 Sv, contributing to the Atlantic Meridional Overturning Circulation (AMOC). Here, Lagrangian analysis quantifies the global distributions of volume transport, transit‐times, thermohaline properties, diapycnal transformation, heat and freshwater transports associated with Bering Strait throughflow. Virtual Lagrangian parcels, released at Bering Strait, are advected by the velocity of Estimating the Circulation and Climate of the Ocean, backward and forward in time. Backward trajectories reveal that Bering Strait throughflow enters the Pacific basin on the southeast side, as part of fresh Antarctic Intermediate Water, then follows the wind‐driven circulation to Bering Strait. Median transit time from S in Indo‐Pacific to Bering Strait is 175 years. Sixty‐four percent of Bering Strait throughflow enters the North Atlantic through the Labrador Sea. The remaining 36% flows through the Greenland Sea, warmed and salinified by the northward flowing Atlantic waters. Deep water formation of water flowing through Bering Strait occurs predominantly in the Labrador Sea. Subsequently, this water joins the lower branch of AMOC, flowing southward in the deep western boundary current as North Atlantic Deep Water. Median transit time from Bering Strait to S in South Atlantic is 160 years. The net heat transport of Bering Strait throughflow is northward everywhere, and net freshwater transport by Bering Strait throughflow is mostly northward. The freshwater transport is largest in the subpolar region of basin sectors: northward in the Pacific and Arctic and southward in the Atlantic.more » « less