skip to main content

Search for: All records

Award ID contains: 1558742

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydrographic and velocity data from a 2018 winter survey of the western Iceland and Greenland Seas are used to investigate the ventilation of overflow water feeding Denmark Strait. We focus on the two general classes of overflow water: warm, saline Atlantic‐origin Overflow Water (AtOW) and cold, fresh Arctic‐origin Overflow Water (ArOW). The former is found predominantly within the East Greenland Current (EGC), while the latter resides in the interior of the Iceland and Greenland Seas. Progressing north to south, the properties of AtOW in the EGC are modified diapycnally during the winter, in contrast to summer when along‐isopycnal mixing dominates. The water column response to a 10‐days cold‐air outbreak was documented using repeat observations. During the event, the northerly winds pushed the freshwater cap of the EGC onshore, and convection modified the water at the seaward edge of the current. Lateral transfer of heat and salt from the core of AtOW in the EGC appears to have influenced some of this water mass transformation. The long‐term evolution of the mixed layers in the interior was investigated using a 1‐D mixing model. This suggests that, under strong atmospheric forcing, the densest component of ArOW can be ventilated in this region. Numerous anti‐cyclonic eddies spawned from the EGC were observed during the winter survey, revealing that these features can play differing roles in modifying/prohibiting the open‐ocean convection.

    more » « less
  2. Abstract

    Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.

    more » « less
  3. Abstract

    Mesoscale features present at the Denmark Strait sill regularly enhance the volume transport of the Denmark Strait overflow (DSO). They are important for the Atlantic Meridional Overturning Circulation and ultimately, for the global climate system. Using a realistic numerical model, we find new evidence of the causal relationship between overflow surges (i.e., mesoscale features associated with high‐transport events) and DSO cyclones observed downstream. Most of the cyclones form at the Denmark Strait sill during overflow surges and, because of potential vorticity conservation and stretching of the water column, grow as they move equatorward. A fraction of the cyclones form downstream of the sill, when anticyclonic vortices formed during high‐transport events start collapsing. Regardless of their formation mechanism, DSO cyclones weaken starting roughly 150 km downstream of the sill, and potential vorticity is only materially conserved during the growth phase.

    more » « less
  4. Abstract

    The Iceland and Greenland Seas are a crucial region for the climate system, being the headwaters of the lower limb of the Atlantic Meridional Overturning Circulation. Investigating the atmosphere–ocean–ice processes in this region often necessitates the use of meteorological reanalyses—a representation of the atmospheric state based on the assimilation of observations into a numerical weather prediction system. Knowing the quality of reanalysis products is vital for their proper use. Here we evaluate the surface‐layer meteorology and surface turbulent fluxes in winter and spring for the latest reanalysis from the European Centre for Medium‐Range Weather Forecasts, i.e., ERA5. In situ observations from a meteorological buoy, a research vessel, and a research aircraft during the Iceland–Greenland Seas Project provide unparalleled coverage of this climatically important region. The observations are independent of ERA5. They allow a comprehensive evaluation of the surface meteorology and fluxes of these subpolar seas and, for the first time, a specific focus on the marginal ice zone. Over the ice‐free ocean, ERA5 generally compares well to the observations of surface‐layer meteorology and turbulent fluxes. However, over the marginal ice zone, the correspondence is noticeably less accurate: for example, the root‐mean‐square errors are significantly higher for surface temperature, wind speed, and surface sensible heat flux. The primary reason for the difference in reanalysis quality is an overly smooth sea‐ice distribution in the surface boundary conditions used in ERA5. Particularly over the marginal ice zone, unrepresented variability and uncertainties in how to parameterize surface exchange compromise the quality of the reanalyses. A parallel evaluation of higher‐resolution forecast fields from the Met Office's Unified Model corroborates these findings.

    more » « less
  5. Abstract

    Data from repeat hydrographic surveys over the 25‐year period 1993 to 2017, together with satellite altimetry data, are used to quantify the temporal and spatial variability of the North Icelandic Irminger Current (NIIC), East Icelandic Current (EIC), and the water masses they advect around northern Iceland. We focus on the warm, salty Atlantic Water (AW) flowing northward through Denmark Strait and the cooler, fresher, denser Atlantic‐origin Overflow Water (AtOW) which has circulated cyclonically around the rim of the Nordic Seas before being advected to the Iceland slope via the EIC. The absolute geostrophic velocities reveal that approximately half of the NIIC recirculates just north of Denmark Strait, while the remaining half merges with the EIC to form a single current that extends to the northeast of Iceland, with no further loss in transport of either component. The AW percentage decreases by 75% over this distance, while the AtOW percentage is higher than that of the AW in the merged current. The NIIC and merged NIIC‐EIC are found to be baroclinically unstable, which causes the flow to become increasingly barotropic as it progresses around Iceland. A seasonal accounting of the water masses within the currents indicates that only in springtime is the NIIC dominated by AW inflow north of Denmark Strait. Overall, there is considerably more seasonal and along‐stream variability in the properties of the flow prior to the merging of the NIIC and EIC. Over the 25‐year time period, the NIIC became warmer, saltier, and increased in volume transport.

    more » « less
  6. Abstract

    Revolutionary observational arrays, together with a new generation of ocean and climate models, have provided new and intriguing insights into the Atlantic Meridional Overturning Circulation (AMOC) over the last two decades. Theoretical models have also changed our view of the AMOC, providing a dynamical framework for understanding the new observations and the results of complex models. In this paper we review recent advances in conceptual understanding of the processes maintaining the AMOC. We discuss recent theoretical models that address issues such as the interplay between surface buoyancy and wind forcing, the extent to which the AMOC is adiabatic, the importance of mesoscale eddies, the interaction between the middepth North Atlantic Deep Water cell and the abyssal Antarctic Bottom Water cell, the role of basin geometry and bathymetry, and the importance of a three‐dimensional multiple‐basin perspective. We review new paradigms for deep water formation in the high‐latitude North Atlantic and the impact of diapycnal mixing on vertical motion in the ocean interior. And we discuss advances in our understanding of the AMOC's stability and its scaling with large‐scale meridional density gradients. Along with reviewing theories for the mean AMOC, we consider models of AMOC variability and discuss what we have learned from theory about the detection and meridional propagation of AMOC anomalies. Simple theoretical models remain a vital and powerful tool for articulating our understanding of the AMOC and identifying the processes that are most critical to represent accurately in the next generation of numerical ocean and climate models.

    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Abstract The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification. 
    more » « less
  9. null (Ed.)
    Abstract The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 10 6 m 3 s −1 ), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill. 
    more » « less
  10. null (Ed.)
    Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell. 
    more » « less