skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The roles of chalcogenides in O 2 protection of H 2 ase active sites
At some point, all HER (Hydrogen Evolution Reaction) catalysts, important in sustainable H 2 O splitting technology, will encounter O 2 and O 2 -damage. The [NiFeSe]-H 2 ases and some of the [NiFeS]–H 2 ases, biocatalysts for reversible H 2 production from protons and electrons, are exemplars of oxygen tolerant HER catalysts in nature. In the hydrogenase active sites oxygen damage may be extensive (irreversible) as it is for the [FeFe]–H 2 ase or moderate (reversible) for the [NiFe]–H 2 ases. The affinity of oxygen for sulfur, in [NiFeS]–H 2 ase, and selenium, in [NiFeSe]–H 2 ase, yielding oxygenated chalcogens results in maintenance of the core NiFe unit, and myriad observable but inactive states, which can be reductively repaired. In contrast, the [FeFe]–H 2 ase active site has less possibilities for chalcogen-oxygen uptake and a greater chance for O 2 -attack on iron. Exposure to O 2 typically leads to irreversible damage. Despite the evidence of S/Se-oxygenation in the active sites of hydrogenases, there are limited reported synthetic models. This perspective will give an overview of the studies of O 2 reactions with the hydrogenases and biomimetics with focus on our recent studies that compare sulfur and selenium containing synthetic analogues of the [NiFe]–H 2 ase active sites.  more » « less
Award ID(s):
1665258
PAR ID:
10199349
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
35
ISSN:
2041-6520
Page Range / eLocation ID:
9366 to 9377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2sensitivity, binding specificity, or H2production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase fromClostridium beijerinckiiusing a flexible [GGS]4linker group (CbHydA1-PsaE). We demonstrate that theCbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2at a rate of 84.9 ± 3.1 µmol H2mgchl–1h–1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2mgchl–1h–1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2generating system that can function in the presence of O2
    more » « less
  2. A biomimetic study for S/Se oxygenation in Ni(μ-EPh)(μ-SN 2 )Fe, (E = S or Se; SN 2 = Me-diazacycloheptane-CH 2 CH 2 S); Fe = (η 5 -C 5 H 5 )Fe II (CO) complexes related to the oxygen-damaged active sites of [NiFeS]/[NiFeSe]-H 2 ases is described. Mono- and di-oxygenates (major and minor species, respectively) of the chalcogens result from exposure of the heterobimetallics to O 2 ; one was isolated and structurally characterized to have Ni–O–Se Ph –Fe–S connectivity within a 5-membered ring. A compositionally analogous mono-oxy species was implicated by ν (CO) IR spectroscopy to be the corresponding Ni–O–S Ph –Fe–S complex; treatment with O-abstraction agents such as P( o -tolyl) 3 or PMe 3 remediated the O damage. Computational studies (DFT) found that the lowest energy isomers of mono-oxygen derivatives of Ni(μ-EPh)(μ-SN 2 )Fe complexes were those with O attachment to Ni rather than Fe, a result consonant with experimental findings, but at odds with oxygenates found in oxygen-damaged [NiFeS]/[NiFeSe]-H 2 ase structures. A computer-generated model based on substituting − SMe for the N-CH 2 CH 2 S − sulfur donor of the N 2 S suggested that constraint within the chelate hindered O-atom uptake at that sulfur site. 
    more » « less
  3. Abstract Electrocatalytic [FeFe]‐hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom‐transfer radical polymerization (ATRP), a new class of [FeFe]‐metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long‐term chemical and aerobic stability. Water soluble functional metallopolymers facilitate electrocatalytic hydrogen production in neutral water with loadings as low as 2 ppm and operate at rates an order of magnitude faster than hydrogenases (2.5×105 s−1), and with low overpotential requirement. Furthermore, unlike the hydrogenases, these systems are insensitive to oxygen during catalysis, with turnover numbers on the order of 40 000 under both anaerobic and aerobic conditions. 
    more » « less
  4. Metal-free carbon materials have emerged as cost-effective and high-performance catalysts for the production of hydrogen peroxide (H 2 O 2 ) through the two-electron oxygen reduction reaction (ORR). Here, we show that 3D crumpled graphene with controlled oxygen and defect configurations significantly improves the electrocatalytic production of H 2 O 2 . The crumpled graphene electrocatalyst with optimal defect structures and oxygen functional groups exhibits outstanding H 2 O 2 selectivity of 92–100% in a wide potential window of 0.05–0.7 V vs. reversible hydrogen electrode (RHE) and a high mass activity of 158 A g −1 at 0.65 V vs. RHE in alkaline media. In addition, the crumpled graphene catalyst showed an excellent H 2 O 2 production rate of 473.9 mmol gcat −1 h −1 and stability over 46 h at 0.4 V vs. RHE. Moreover, density functional theory calculations revealed the role of the functional groups and defect sites in the two-electron ORR pathway through the scaling relation between OOH and O adsorption strengths. These results establish a structure-mechanism-performance relationship of functionalized carbon catalysts for the effective production of H 2 O 2 . 
    more » « less
  5. [FeFe] hydrogenases comprise an important class of H2 evolving enzymes; however, these proteins are often oxygen sensitive and require anaerobic environments for characterization. Understanding the electrochemical relationships between various active and inactive states of these enzymes is instrumental in uncovering the reaction mechanisms of the complex six-iron active center of [FeFe] hydrogenases called H-cluster. Since states of the H-cluster exhibit distinct fingerprint-like spectra in the mid-IR range, IR spectroelectrochemical experiments provide a powerful methodological framework for this goal. This chapter describes protocols for performing Fourier-transform infrared (FTIR) spectroelectrochemical experiments on [FeFe] hydrogenases under anaerobic conditions. Topics included experimental design, data acquisition, and data analysis. 
    more » « less