Abstract Reviewed herein is the development of novel polymer‐supported [2Fe‐2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small‐molecule, [2Fe‐2S]‐containing mimetics of the active site (H‐cluster) of these metalloenzymes have been synthesized for years. These small [2Fe‐2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe‐2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer‐supported [2Fe‐2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe‐2S] complex, termed single‐site [2Fe‐2S] metallopolymers, exhibit superior activity for H2production.
more »
« less
Anaerobic Infrared Spectroelectrochemical Methods for Studying Oxygen-Sensitive [FeFe] Hydrogenases
[FeFe] hydrogenases comprise an important class of H2 evolving enzymes; however, these proteins are often oxygen sensitive and require anaerobic environments for characterization. Understanding the electrochemical relationships between various active and inactive states of these enzymes is instrumental in uncovering the reaction mechanisms of the complex six-iron active center of [FeFe] hydrogenases called H-cluster. Since states of the H-cluster exhibit distinct fingerprint-like spectra in the mid-IR range, IR spectroelectrochemical experiments provide a powerful methodological framework for this goal. This chapter describes protocols for performing Fourier-transform infrared (FTIR) spectroelectrochemical experiments on [FeFe] hydrogenases under anaerobic conditions. Topics included experimental design, data acquisition, and data analysis.
more »
« less
- Award ID(s):
- 1943748
- PAR ID:
- 10637625
- Publisher / Repository:
- Springer US
- Date Published:
- Volume:
- 2648
- Page Range / eLocation ID:
- 43 to 62
- Subject(s) / Keyword(s):
- Fourier-transform infrared spectroscopy [FeFe] hydrogenase Data analysis Spectroelectrochemistry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)At some point, all HER (Hydrogen Evolution Reaction) catalysts, important in sustainable H 2 O splitting technology, will encounter O 2 and O 2 -damage. The [NiFeSe]-H 2 ases and some of the [NiFeS]–H 2 ases, biocatalysts for reversible H 2 production from protons and electrons, are exemplars of oxygen tolerant HER catalysts in nature. In the hydrogenase active sites oxygen damage may be extensive (irreversible) as it is for the [FeFe]–H 2 ase or moderate (reversible) for the [NiFe]–H 2 ases. The affinity of oxygen for sulfur, in [NiFeS]–H 2 ase, and selenium, in [NiFeSe]–H 2 ase, yielding oxygenated chalcogens results in maintenance of the core NiFe unit, and myriad observable but inactive states, which can be reductively repaired. In contrast, the [FeFe]–H 2 ase active site has less possibilities for chalcogen-oxygen uptake and a greater chance for O 2 -attack on iron. Exposure to O 2 typically leads to irreversible damage. Despite the evidence of S/Se-oxygenation in the active sites of hydrogenases, there are limited reported synthetic models. This perspective will give an overview of the studies of O 2 reactions with the hydrogenases and biomimetics with focus on our recent studies that compare sulfur and selenium containing synthetic analogues of the [NiFe]–H 2 ase active sites.more » « less
-
The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2sensitivity, binding specificity, or H2production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase fromClostridium beijerinckiiusing a flexible [GGS]4linker group (CbHydA1-PsaE). We demonstrate that theCbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2at a rate of 84.9 ± 3.1 µmol H2mgchl–1h–1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2mgchl–1h–1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2generating system that can function in the presence of O2.more » « less
-
Abstract Electrocatalytic [FeFe]‐hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom‐transfer radical polymerization (ATRP), a new class of [FeFe]‐metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long‐term chemical and aerobic stability. Water soluble functional metallopolymers facilitate electrocatalytic hydrogen production in neutral water with loadings as low as 2 ppm and operate at rates an order of magnitude faster than hydrogenases (2.5×105 s−1), and with low overpotential requirement. Furthermore, unlike the hydrogenases, these systems are insensitive to oxygen during catalysis, with turnover numbers on the order of 40 000 under both anaerobic and aerobic conditions.more » « less
-
Abstract Maturation of [FeFe]‐hydrogenase (HydA) involves synthesis of a CO, CN−, and dithiomethylamine (DTMA)‐coordinated 2Fe subcluster that is inserted into HydA to make the active hydrogenase. This process requires three maturation enzymes: the radical S‐adenosyl‐l‐methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. In vitro maturation with purified maturation enzymes has been possible only when clarified cell lysate was added, with the lysate presumably providing essential components for DTMA synthesis and delivery. Here we report maturation of [FeFe]‐hydrogenase using a fully defined system that includes components of the glycine cleavage system (GCS), but no cell lysate. Our results reveal for the first time an essential role for the aminomethyl‐lipoyl‐H‐protein of the GCS in hydrogenase maturation and the synthesis of the DTMA ligand of the H‐cluster. In addition, we show that ammonia is the source of the bridgehead nitrogen of DTMA.more » « less
An official website of the United States government

