skip to main content


Title: Generation of helical topological exciton-polaritons

Topological photonics in strongly coupled light-matter systems offer the possibility for fabricating tunable optical devices that are robust against disorder and defects. Topological polaritons, i.e., hybrid exciton-photon quasiparticles, have been proposed to demonstrate scatter-free chiral propagation, but their experimental realization to date has been at deep cryogenic temperatures and under strong magnetic fields. We demonstrate helical topological polaritons up to 200 kelvin without external magnetic field in monolayer WS2excitons coupled to a nontrivial photonic crystal protected by pseudo time-reversal symmetry. The helical nature of the topological polaritons, where polaritons with opposite helicities are transported to opposite directions, is verified. Topological helical polaritons provide a platform for developing robust and tunable polaritonic spintronic devices for classical and quantum information-processing applications.

 
more » « less
Award ID(s):
1936276 1842612
NSF-PAR ID:
10199805
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
370
Issue:
6516
ISSN:
0036-8075
Page Range / eLocation ID:
p. 600-604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polaritons in hyperbolic van der Waals materials—where principal axes have permittivities of opposite signs—are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.

     
    more » « less
  2. Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

     
    more » « less
  3. Abstract

    Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.

     
    more » « less
  4. Topological photonics offers enhanced control over electromagnetic fields by providing a platform for robust trapping and guiding of topological states of light. By combining the strong coupling between topological photons with phonons in hexagonal boron nitride (hBN), we demonstrate a platform to control and guide hybrid states of light and lattice vibrations. The observed topological edge states of phonon-polaritons are found to carry nonzero angular momentum locked to their propagation direction, which enables their robust transport. Thus, these topological quasiparticles enable the funneling of infrared phonons mediated by helical infrared photons along arbitrary pathways and across sharp bends, thereby offering opportunities for applications ranging from Raman and vibrational spectroscopy with structured phonon-polaritons to directional heat dissipation. 
    more » « less
  5. Abstract

    The discovery of topological Hall effect (THE) has important implications for next‐generation high‐density nonvolatile memories, energy‐efficient nanoelectronics, and spintronic devices. Both real‐space topological spin configurations and two anomalous Hall effects (AHE) with opposite polarity due to two magnetic phases have been proposed for THE‐like feature in SrRuO3(SRO) films. In this work, SRO thin films with and without THE‐like features are systematically Investigated to decipher the origin of the THE feature. Magnetic measurement reveals the coexistence of two magnetic phases of different coercivity (Hc) in both the films, but the hump feature cannot be explained by the two channel AHE model based on these two magnetic phases. In fact, the AHE is mainly governed by the magnetic phase with higherHc. A diffusive Berry phase transition model is proposed to explain the THE feature. The coexistence of two Berry phases with opposite signs over a narrow temperature range in the high Hc magnetic phase can explain the THE like feature. Such a coexistence of two Berry phases is due to the strong local structural tilt and microstructure variation in the thinner films. This work provides an insight between structure/micro structure and THE like features in SRO epitaxial thin films.

     
    more » « less