skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Grade Replacement and Weighted Averages for Second-Chance Exams
We explore how course policies affect students' studying and learning when a second-chance exam is offered. High-stakes, one-off exams remain a de facto standard for assessing student knowledge in STEM, despite compelling evidence that other assessment paradigms such as mastery learning can improve student learning. Unfortunately, mastery learning can be costly to implement. We explore the use of optional second-chance testing to sustainably reap the benefits of mastery-based learning at scale. Prior work has shown that course policies affect students' studying and learning but have not compared these effects within the same course context. We conducted a quasi-experimental study in a single course to compare the effect of two grading policies for second-chance exams and the effect of increasing the size of the range of dates for students taking asynchronous exams. The first grading policy, called 90-cap, allowed students to optionally take a second-chance exam that would fully replace their score on a first-chance exam except the second-chance exam would be capped at 90% credit. The second grading policy, called 90-10, combined students' first- and second-chance exam scores as a weighted average (90% max score + 10% min score). The 90-10 policy significantly increased the likelihood that marginally competent students would take the second-chance exam. Further, our data suggests that students learned more under the 90-10 policy, providing improved student learning outcomes at no cost to the instructor. Most students took exams on the last day an exam was available, regardless of how many days the exam was available.  more » « less
Award ID(s):
1915257
PAR ID:
10200288
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 ACM Conference on International Computing Education Research
Page Range / eLocation ID:
56 to 66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Specifications and mastery grading schemes have been growing in popularity in higher education over the past several years, and reports of specifications grading and other alternative grading systems are emerging in the chemistry education literature. The general goal of these alternative grading approaches is to reduce the reliance on high-stakes exams and give students a more transparent pathway to achieving the course learning outcomes. More importantly, relying less on infrequent high-stakes exams may help reduce historical equity gaps in introductory gateway STEM courses. Herein, we describe the implementation of two versions of mastery grading systems in large enrollment general chemistry courses at a public R1 institution. Class-wide course outcomes, equity gaps in performance on a common final exam, and student feedback on their experience navigating these grading schemes are presented. We show that combining mastery grading with interactive courseware tools improved the average performance on a common final assessment for under-represented minority (URM) students by 7.1 percentage points relative to an active control course that used infrequent high-stakes exams. 
    more » « less
  2. In this full research paper, we examine various grading policies for second-chance testing. Second-chance testing refers to giving students the opportunity to take a second version of a test for some form of grade replacement. Second-chance testing as a pedagogical strategy bears some similarities to mastery learning, but second-chance testing is less expensive to implement. Previous work has shown that second-chance testing is associated with improved performance, but there is still a lack of clarity regarding the optimal grading policies for this testing strategy. We interviewed seven instructors who use second-chance testing in their courses to collect data on why they chose specific policies. We then conducted structured interviews with some students (N = 11) to capture more nuance about students’ decision making processes under the different grading policies. Afterwards, we conducted a quasi-experimental study to compare two second-chance testing grading policies and determine how they influenced students across multiple dimensions. We varied the grading policies used in two similar sophomore-level engineering courses. We collected assessment data and administered a survey that queried students (N = 513) about their behavior and reactions to both grading policies. Surprisingly, we found that the students’ preference between these two policies were almost perfectly split. We conclude that there are likely many policies that perform well by being simple and encouraging serious attempts on both tests. 
    more » « less
  3. This full research paper explores students’ attitudes toward second-chance testing and how second-chance testing influences students’ behavior. Second-chance testing refers to giving students the opportunity to take a second instance of each exam for some sort of grade replacement. Previous work has demonstrated that second-chance testing can lead to improved student outcomes in courses, but how to best structure second-chance testing to maximize its benefits remains an open question. We complement previous work by interviewing a diverse group of 23 students that have taken courses that use second-chance testing. From the interviews, we sought to gain insight into students’ views and use of second-chance testing. We found that second-chance testing was almost universally viewed positively by the students and was frequently cited as helping to reduce test takers’ anxiety and boost their confidence. Overall, we find that the majority of students prepare for second-chance exams in desirable ways, but we also note ways in which second-chance testing can potentially lead to undesirable behaviors including procrastination, over-reliance on memorization, and attempts to game the system. We identified emergent themes pertaining to various facets of second-chance test-taking, including: 1) concerns about the time commitment required for second-chance exams; 2) a belief that second-chance exams promoted fairness; and 3) how second-chance testing incentivized learning. This paper will provide instructors and other stakeholders with detailed insights into students’ behavior regarding second-chance testing, enabling instructors to develop better policies and avoid unintended consequences. 
    more » « less
  4. This theory paper focuses on understanding how mastery learning has been implemented in undergraduate engineering courses through a systematic review. Academic environments that promote learning, mastery, and continuous improvement rather than inherent ability can promote performance and persistence. Scholarship has argued that students could achieve mastery of the course material when the time available to master concepts and the quality of instruction was made appropriate to each learner. Increasing time to demonstrate mastery involves a course structure that allows for repeated attempts on learning assessments (i.e., homework, quizzes, projects, exams). Students are not penalized for failed attempts but are rewarded for achieving eventual mastery. The mastery learning approach recognizes that mastery is not always achieved on first attempts and learning from mistakes and persisting is fundamental to how we learn. This singular concept has potentially the greatest impact on students’ mindset in terms of their belief they can be successful in learning the course material. A significant amount of attention has been given to mastery learning courses in secondary education and mastery learning has shown an exceptionally positive effect on student achievement. However, implementing mastery learning in an undergraduate course can be a cumbersome process as it requires instructors to significantly restructure their assignments and exams, evaluation process, and grading practices. In light of these challenges, it is unclear the extent to which mastery learning has been implemented in undergraduate engineering courses or if similar positive effects can be found. Therefore, we conducted a systematic review to elucidate, how in the U.S., (1) has mastery learning been implemented in undergraduate engineering courses from 1990 to the present time and (2) the student outcomes that have been reported for these implementations. Using the systematic process outlined by Borrego et al. (2014), we surveyed seven databases and a total of 584 articles consisting of engineering and non-engineering courses were identified. We focused our review on studies that were centered on applying the mastery learning pedagogical method in undergraduate engineering courses. All peer-reviewed and practitioner articles and conference proceedings that were within our scope were included in the synthetization phase of the review. Most articles were excluded based on our inclusion and exclusion criteria. Twelve studies focused on applying mastery learning to undergraduate engineering courses. The mastery learning method was mainly applied on midterm exams, few studies used the method on homework assignments, and no study applied the method to the final exam. Students reported an increase in learning as a result of applying mastery learning. Several studies reported that students’ grades in a traditional final exam were not affected by mastery learning. Students’ self-reported evaluation of the course suggests that students prefer the mastery learning approach over traditional methods. Although a clear consensus on the effect of the mastery learning approach could not be achieved as each article applied different survey instruments to capture students’ perspectives. Responses to open-ended questions have mixed results. Two studies report more positive student comments on opened-ended questions, while one study report receiving more negative comments regarding the implementation of the mastery learning method. In the full paper we more thoroughly describe the ways in which mastery learning was implemented along with clear examples of common and divergent student outcomes across the twelve studies. 
    more » « less
  5. Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning. 
    more » « less