skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial Learning for Multi-task Sequence Labeling with Attention Mechanism
With the requirements of natural language applications, multi-task sequence labeling methods have some immediate benefits over the single-task sequence labeling methods. Recently, many state-of-the-art multi-task sequence labeling methods were proposed, while still many issues to be resolved including (C1) exploring a more general relationship between tasks, (C2) extracting the task-shared knowledge purely and (C3) merging the task-shared knowledge for each task appropriately. To address the above challenges, we propose MTAA , a symmetric multi-task sequence labeling model, which performs an arbitrary number of tasks simultaneously. Furthermore, MTAA extracts the shared knowledge among tasks by adversarial learning and integrates the proposed multi-representation fusion attention mechanism for merging feature representations. We evaluate MTAA on two widely used data sets: CoNLL2003 and OntoNotes5.0. Experimental results show that our proposed model outperforms the latest methods on the named entity recognition and the syntactic chunking task by a large margin, and achieves state-of-the-art results on the part-of-speech tagging task.  more » « less
Award ID(s):
1939725 1947135
PAR ID:
10200358
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE/ACM Transactions on Audio, Speech, and Language Processing
ISSN:
2329-9290
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets. 
    more » « less
  2. A key assumption in multi-task learning is that at the inference time the multi-task model only has access to a given data point but not to the data point’s labels from other tasks. This presents an opportunity to extend multi-task learning to utilize data point’s labels from other auxiliary tasks, and this way improves performance on the new task. Here we introduce a novel relational multi-task learning setting where we leverage data point labels from auxiliary tasks to make more accurate predictions on the new task. We develop MetaLink, where our key innovation is to build a knowledge graph that connects data points and tasks and thus allows us to leverage labels from auxiliary tasks. The knowledge graph consists of two types of nodes: (1) data nodes, where node features are data embeddings computed by the neural network, and (2) task nodes, with the last layer’s weights for each task as node features. The edges in this knowledge graph capture data-task relationships, and the edge label captures the label of a data point on a particular task. Under MetaLink, we reformulate the new task as a link label prediction problem between a data node and a task node. The MetaLink framework provides flexibility to model knowledge transfer from auxiliary task labels to the task of interest. We evaluate MetaLink on 6 benchmark datasets in both biochemical and vision domains. Experiments demonstrate that MetaLink can successfully utilize the relations among different tasks, outperforming the state-of-the-art methods under the proposed relational multi-task learning setting, with up to 27% improvement in ROC AUC. 
    more » « less
  3. Typical deep visual recognition models are capable of performing the one task they were trained on. In this paper, we tackle the extremely difficult problem of combining distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training. Prior work in model merging permutes one model to the space of the other then averages them together. While this works for models trained on the same task, we find that this fails to account for the differences in models trained on disjoint tasks. Thus, we introduce "ZipIt!", a general method for merging two arbitrary models of the same architecture that incorporates two simple strategies. First, in order to account for features that aren't shared between models, we expand the model merging problem to allow for merging features within each model by defining a general "zip" operation. Second, we add support for partially zipping the models up until a specified layer, naturally creating a multi-head model. We find that these two changes combined account for 20-60% improvement over prior work, making it more feasible to merge models trained on disjoint tasks without retraining. 
    more » « less
  4. In this paper, we propose a deep multi-Task learning model based on Adversarial-and-COoperative nets (TACO). The goal is to use an adversarial-and-cooperative strategy to decouple the task-common and task-specific knowledge, facilitating the fine-grained knowledge sharing among tasks. TACO accommodates multiple game players, i.e., feature extractors, domain discriminator, and tri-classifiers. They play the MinMax games adversarially and cooperatively to distill the task-common and task-specific features, while respecting their discriminative structures. Moreover, it adopts a divide-and-combine strategy to leverage the decoupled multi-view information to further improve the generalization performance of the model. The experimental results show that our proposed method significantly outperforms the state-of-the-art algorithms on the benchmark datasets in both multi-task learning and semi-supervised domain adaptation scenarios. 
    more » « less
  5. null (Ed.)
    Named entity recognition (NER) is a fundamental task in the natural language processing (NLP) area. Recently, representation learning methods (e.g., character embedding and word embedding) have achieved promising recognition results. However, existing models only consider partial features derived from words or characters while failing to integrate semantic and syntactic information (e.g., capitalization, inter-word relations, keywords, lexical phrases, etc.) from multi-level perspectives. Intuitively, multi-level features can be helpful when recognizing named entities from complex sentences. In this study, we propose a novel framework called attention-based multi-level feature fusion (AMFF), which is used to capture the multi-level features from different perspectives to improve NER. Our model consists of four components to respectively capture the local character-level, global character-level, local word-level, and global word-level features, which are then fed into a BiLSTM-CRF network for the final sequence labeling. Extensive experimental results on four benchmark datasets show that our proposed model outperforms a set of state-of-the-art baselines. 
    more » « less