skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defect identification and statistics toolbox: automated defect analysis for scanning probe microscopy images
Award ID(s):
1709029
PAR ID:
10200366
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
33
Issue:
4
ISSN:
0953-8984
Page Range / eLocation ID:
045901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While p-type BiCuSeO is a well-known mid-temperature oxide thermoelectric (TE) material, computations predict that superior TE performance can be realized through n-type doping. In this study, we use first-principles defect calculations to show that Cu vacancies are responsible for the native p-type self doping; yet, we find that BiCuSeO is n-type dopable under Cu-rich growth conditions, where the formation of Cu vacancies is suppressed. We computationally survey a broad suite of 23 dopants and find that only Cl and Br are effective n-type dopants. Therefore, we recommend that future experimental doping efforts utilize phase boundary mapping to optimize the electron concentration and resolve the anomalous p–n–p transitions observed in halogen-doped BiCuSeO. The prospect of n-type doping, as revealed by our defect calculations, paves the path for rational design of BiCuSeO chemical analogues with similar doping behavior and even better TE performance. 
    more » « less
  2. A bstract Given a 4d $$ \mathcal{N} $$ N = 2 superconformal theory with an $$ \mathcal{N} $$ N = (2 , 2) superconformal surface defect, a marginal perturbation of the bulk theory induces a complex structure deformation of the defect moduli space. We describe a concrete way of computing this deformation using the bulk-defect OPE. 
    more » « less