skip to main content


Title: IGaaS: An IoT Gateway-as-a-Service for On-demand Provisioning of IoT Gateways
The widespread adoption of the Internet of Things (IoT) devices has increased its popularity and usage in diverse dimensions, including smart city, home, healthcare, and vehicles. The pervasiveness of the number of IoT devices that operate in low power and lossy network leads to performance issues. An excessive amount of IoT devices that operate with a fixed number of gateways reduce the quality of service (QoS) due to the increased latency of routing messages between the source and destination sensors. In this paper, we propose an IoT Gateway as a Service (IGaaS) that enables on-demand provisioning of IoT Gateways to maintain and improve QoS in an IoT system with a significant number of sensors. The IGaaS allows both the stationary and mobile gateways to be provisioned on-demand. The mobile devices, such as smartphones and drones, provide gateway services in exchange for incentives. The IGaaS supports both the upscale and downscale of IoT gateways depending on various metrics and requirements. The experimental results show that the IGaaS improves the QoS in terms of latency and power consumption.  more » « less
Award ID(s):
1642078
NSF-PAR ID:
10200841
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE 6th World Forum on Internet of Things (WF-IoT)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of drones (IoD), employing drones as the internet of things (IoT) devices, brings flexibility to IoT networks and has been used to provision several applications (e.g., object tracking and traffic surveillance). The explosive growth of users and IoD applications injects massive traffic into IoD networks, hence causing congestions and reducing the quality of service (QoS). In order to improve the QoS, caching at IoD gateways is a promising solution which stores popular IoD data and sends them directly to the users instead of activating drones to transmit the data; this reduces the traffic in IoD networks. In order to fully utilize the storage-limited caches, appropriate content placement decisions should be made to determine which data should be cached. On the other hand, appropriate drone association strategies, which determine the serving IoD gateway for each drone, help distribute the network traffic properly and hence improve the QoS. In our work, we consider a joint optimization of drone association and content placement problem aimed at maximizing the average data transfer rate. This problem is formulated as an integer linear programming (ILP) problem. We then design the Drone Association and Content Placement (DACP) algorithm to solve this problem with low computational complexity. Extensive simulations demonstrate the performance of DACP. 
    more » « less
  2. Recent Internet-of-Things (IoT) networks span across a multitude of stationary and robotic devices, namely unmanned ground vehicles, surface vessels, and aerial drones, to carry out mission-critical services such as search and rescue operations, wildfire monitoring, and flood/hurricane impact assessment. Achieving communication synchrony, reliability, and minimal communication jitter among these devices is a key challenge both at the simulation and system levels of implementation due to the underpinning differences between a physics-based robot operating system (ROS) simulator that is time-based and a network-based wireless simulator that is event-based, in addition to the complex dynamics of mobile and heterogeneous IoT devices deployed in a real environment. Nevertheless, synchronization between physics (robotics) and network simulators is one of the most difficult issues to address in simulating a heterogeneous multi-robot system before transitioning it into practice. The existing TCP/IP communication protocol-based synchronizing middleware mostly relied on Robot Operating System 1 (ROS1), which expends a significant portion of communication bandwidth and time due to its master-based architecture. To address these issues, we design a novel synchronizing middleware between robotics and traditional wireless network simulators, relying on the newly released real-time ROS2 architecture with a master-less packet discovery mechanism. Additionally, we propose a ground and aerial agents’ velocity-aware customized QoS policy for Data Distribution Service (DDS) to minimize the packet loss and transmission latency between a diverse set of robotic agents, and we offer the theoretical guarantee of our proposed QoS policy. We performed extensive network performance evaluations both at the simulation and system levels in terms of packet loss probability and average latency with line-of-sight (LOS) and non-line-of-sight (NLOS) and TCP/UDP communication protocols over our proposed ROS2-based synchronization middleware. Moreover, for a comparative study, we presented a detailed ablation study replacing NS-3 with a real-time wireless network simulator, EMANE, and masterless ROS2 with master-based ROS1. Our proposed middleware attests to the promise of building a largescale IoT infrastructure with a diverse set of stationary and robotic devices that achieve low-latency communications (12% and 11% reduction in simulation and reality, respectively) while satisfying the reliability (10% and 15% packet loss reduction in simulation and reality, respectively) and high-fidelity requirements of mission-critical applications. 
    more » « less
  3. While our society accelerates its transition to the Internet of Things, billions of IoT devices are now linked to the network. While these gadgets provide enormous convenience, they generate a large amount of data that has already beyond the network’s capacity. To make matters worse, the data acquired by sensors on such IoT devices also include sensitive user data that must be appropriately treated. At the moment, the answer is to provide hub services for data storage in data centers. However, when data is housed in a centralized data center, data owners lose control of the data, since data centers are centralized solutions that rely on data owners’ faith in the service provider. In addition, edge computing enables edge devices to collect, analyze, and act closer to the data source, the challenge of data privacy near the edge is also a tough nut to crack. A large number of user information leakage both for IoT hub and edge made the system untrusted all along. Accordingly, building a decentralized IoT system near the edge and bringing real trust to the edge is indispensable and significant. To eliminate the need for a centralized data hub, we present a prototype of a unique, secure, and decentralized IoT framework called Reja, which is built on a permissioned Blockchain and an intrusion-tolerant messaging system ChiosEdge, and the critical components of ChiosEdge are reliable broadcast and BFT consensus. We evaluated the latency and throughput of Reja and its sub-module ChiosEdge. 
    more » « less
  4. null (Ed.)
    As the number of Internet of Things (IoT) devices continues to increase, energy-harvesting (EH) devices eliminate the need to replace batteries or find outlets for sensors in indoor environments. This comes at a cost, however, as these energy-harvesting devices introduce new failure modes not present in traditional IoT devices: extended periods of no harvestable energy cause them to go dormant, their often simple wireless protocols are unreliable, and their limited energy reserves prohibit many diagnostic features. While energy-harvesting sensors promise easy-to-setup and maintenance-free deployments, their limitations hinder robust, long-term data collection. To continuously monitor and maintain a network of energy-harvesting devices in buildings, we propose the EH-HouseKeeper. EH-HouseKeeper is a data-driven system that monitors EH device compliance and predicts healthy signal zones in a building based on the existing gateway location(s) and building profile for easier device maintenance. EH-HouseKeeper does this by first filtering excess event-triggered data points and applying representation learning on building features that describe the path between the gateways and the device. We assessed EH-HouseKeeper by deploying 125 energy-harvesting sensors of varying types in a 17,000 square foot research infrastructure, randomly masking a quarter of the sensors as the test set for validation. The results of our 6-month data-collection period demonstrate an average greater than 80% accuracy in predicting the health status of the subset. Our results validate techniques for assessing sensor health status across device types, for inferring gateway status, and approaches to assist in identifying between gateway, transmission, and sensor faults. 
    more » « less
  5. The explosion of IoT devices and sensors in recent years has led to a demand for efficiently storing, processing and analyzing time-series data. Geoscience researchers use time-series data stores such as Hydroserver, VOEIS and CHORDS. Many of these tools require a great deal of infrastructure to deploy and expertise to manage and scale. Tapis's (formerly known as Agave) platform as a service provides a way to support researchers in a way that they are not responsible for the infrastructure and can focus on the science. The University of Hawaii (UH) and Texas Advanced Computing Center (TACC) have collaborated to develop a new API integration that combines Tapis with the CHORDS time series data service to support projects at both institutions for storing, annotating and querying time-series data. This new Streams API leverages the strengths of both the Tapis platform and CHORDS service to enable capabilities for supporting time-series data streams not available in either tool alone. These new capabilities may be leveraged by Tapis powered science gateways with needs for handling spatially indexed time-series data-sets for their researchers as they have been at UH and TACC. 
    more » « less