Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid–vapor phase change. Recent developments of liquid–vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid–vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
more »
« less
Harnessing bubble behaviors for developing new analytical strategies
Gas bubbles are easily accessible and offer many unique characteristic properties of a gas/liquid two-phase system for developing new analytical methods. In this minireview, we discuss the newly developed analytical strategies that harness the behaviors of bubbles. Recent advancements include the utilization of the gas/liquid interfacial activity of bubbles for detection and preconcentration of surface-active compounds; the employment of the gas phase properties of bubbles for acoustic imaging and detection, microfluidic analysis, electrochemical sensing, and emission spectroscopy; and the application of the mass transport behaviors at the gas/liquid interface in gas sensing, biosensing, and nanofluidics. These studies have demonstrated the versatility of gas bubbles as a platform for developing new analytical strategies.
more »
« less
- Award ID(s):
- 1943737
- PAR ID:
- 10201074
- Date Published:
- Journal Name:
- The Analyst
- ISSN:
- 0003-2654
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dynamics of a three-phase gas–liquid–liquid multiphase system is examined by direct numerical simulations. The system consists of a continuous liquid phase, buoyant gas bubbles, and smaller heavy drops that fall relative to the continuous liquid. The computational domain is fully periodic, and a force equal to the weight of the mixture is added to keep it in place. The governing parameters are selected so that the terminal Reynolds numbers of the bubbles and the drops are moderate; while the effect of bubble deformability is examined by changing its surface tension, the surface tension for the drops is sufficiently high so they do not deform. One bubble in a “unit cell” and eight freely interacting bubbles are examined. The dependency of the slip velocities, the velocity fluctuations, and the distribution of the dispersed phases on the volume fraction of each phase are examined. It is found that while the distribution of drops around a single bubble in a “unit cell” is uneven and depends on its deformability, the distribution of drops around freely interacting bubbles is relatively uniform for the parameters examined in this study.more » « less
-
Experiments were carried out to observe the flow inside counterflow atomizers over a range of operating conditions and fluid properties. Liquids used were water and propylene glycol, while the gas was either air or helium. Liquid flow rates ranged from 10 ml/min to 40 ml/min, with gas liquid ratio (GLR) ranging from 0.1 to 0.6. The primary experiments used the 7-BM line of the Advanced Photon Source in Argonne National Laboratories with a 2.6 mm atomizer produced from (Poly)Ethyl-Ether-Ketone (PEEK). The X-Ray beam was operated in phase contrast mode, leading to interference patterns near the gas-liquid interface and enabling a qualitative understanding of the flow structure. Complementary optical work applied laser shadowgraphy to a 1 mm orifice atomizer constructed with quartz capillary tubing. A diffuse pulsed Nd:YAG laser backlight captured instantaneous gas-liquid interface positions in the internal flow. With both techniques, two distinct flow behaviors are observed corresponding to low and high GLR values. At low GLR, the inertia of the injected gas is insufficient to penetrate the liquid downflow. The gas stream entering the mixing chamber in the upstream direction is immediately deflected by the denser liquid and enters the discharge tube around a central liquid jet, which is sheared and accelerated by the surrounding gas, leading to breakup. A distinct frequency of jet breakup is observed inside the discharge tube, with the liquid jet oscillating and fragmenting against the walls. The situation at high GLR is quite different, however, as the incoming gas stream asymmetrically penetrates upstream into the mixing chamber, taking the form of a high-speed jet confined along one wall, and displaying a flapping instability as it encounters the liquid flowing downstream. This flapping causes violent mixing, resulting in a highly disturbed interface, along with the generation of liquid ligaments and gas bubbles. This two-phase mixture enters the discharge tube with no liquid jet formation evident for this case. The transition between these two regimes is explored by changing the liquid viscosity and gas molar mass, and weak sensitivity to fluid properties is observed. Further, quantitative image analysis techniques applied to the low and high GLR cases allow extraction of the frequencies of the liquid jet in the discharge tube at low GLR, as well as the flapping mode at high GLR.more » « less
-
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.more » « less
-
Liquid–vapor phase change including evaporation, boiling, and condensation is a ubiquitous process found in power generation, desalination, thermal management, building heating and cooling, and additive manufacturing. The dynamics of droplets and bubbles during phase change including nucleation, growth, and departure critically influence the thermal transport performance and system efficiency. This review will highlight recent advancements using static and dynamic strategies to manipulate droplets and bubbles for phase change applications and beyond.more » « less
An official website of the United States government

