skip to main content


Title: Improving alkane dehydrogenation activity on γ-Al 2 O 3 through Ga doping
Nonoxidative alkane dehydrogenation is a promising route to produce olefins, commonly used as building blocks in the chemical industry. Metal oxides, including γ-Al 2 O 3 and β-Ga 2 O 3 , are attractive dehydrogenation catalysts due to their surface Lewis acid–base properties. In this work, we use density functional theory (DFT) to investigate nonoxidative dehydrogenation of ethane, propane, and isobutane on the Ga-doped and undoped (100) γ-Al 2 O 3 via the concerted and stepwise mechanisms. We revealed that doping (100) γ-Al 2 O 3 with Ga atoms has significant improvement in the dehydrogenation activity by decreasing the C–H activation barriers of the kinetically favored concerted mechanism and increasing the overall dehydrogenation turnover frequencies. We identified the dissociated H 2 binding energy as an activity descriptor for alkane dehydrogenation, accounting for the strength of the Lewis acidity and basicity of the active sites. We demonstrate linear correlations between the dissociated H 2 binding energy and the activation barriers of the rate determining steps for both the concerted and stepwise mechanisms. We further found the carbenium ion stability to be a quantitative reactant-type descriptor, correlating with the C–H activation barriers of the different alkanes. Importantly, we developed an alkane dehydrogenation model that captures the effect of catalyst acid–base surface properties (through dissociated H 2 binding energy) and reactant substitution (through carbenium ion stability). Additionally, we show that the dissociated H 2 binding energy can be used to predict the overall dehydrogenation turnover frequencies. Taken together, our developed methodology facilitates the screening and discovery of alkane dehydrogenation catalysts and demonstrates doping as an effective route to enhance catalytic activity.  more » « less
Award ID(s):
1920623
NSF-PAR ID:
10201349
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
10
Issue:
21
ISSN:
2044-4753
Page Range / eLocation ID:
7194 to 7202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In 2 O 3 is formed on the external surface of the zeolite crystal after the addition of In(NO 3 ) 3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H 2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In + species (In-CHA). A stoichiometric ratio of 1.5 of formed H 2 O to consumed H 2 during H 2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO 2 , 10In/Al 2 O 3 ( i.e. , 10 wt% indium) and bulk In 2 O 3 , in which In 2 O 3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H 2 temperature-programmed reduction (H 2 -TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In + cations in extra-framework positions, and prevent the deep reduction of In 2 O 3 to In(0). In + cations in the CHA zeolite can be oxidized with O 2 to form indium oxide species and can be reduced again with H 2 quantitatively. At comparable conversion, In-CHA shows better stability and C 3 H 6 selectivity (∼85%) than In 2 O 3 , 10In/SiO 2 and 10In/Al 2 O 3 , consistent with a low C 3 H 8 dehydrogenation activation energy (94.3 kJ mol −1 ) and high C 3 H 8 cracking activation energy (206 kJ mol −1 ) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In + cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions. 
    more » « less
  3. null (Ed.)
    Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd 3 M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd 3 M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity. 
    more » « less
  4. Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δ G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions. 
    more » « less
  5. null (Ed.)
    Controlling the reactivity of transition metal complexes by positioning non-innocent functionalities around the catalytic pocket is a concept that has led to significant advances in catalysis. Here we describe our efforts toward the synthesis of dicationic phosphine gold complexes of general formula [( o -Ph 2 P(C 6 H 4 )Carb)Au(tht)] 2+ decorated by a carbenium moiety (Carb) positioned in the immediate vicinity of the gold center. While the most acidic examples of such compounds have limited stability, the dicationic complexes with Carb + = 9- N -methylacridinium and Carb + = [C(Ar N ) 2 ] + (Ar N = p -(C 6 H 4 )NMe 2 ) are active as catalysts for the cycloisomerization of N -propargyl-4-fluorobenzamide, a substrate chosen to benchmark reactivity. The dicationic complex [( o -Ph 2 P(C 6 H 4 )C(Ar N ) 2 )Au(tht)] 2+ , which also promotes hydroarylation and enyne cyclization reactions, displays a higher catalytic activity than its acridinium analog, indicating that the electrophilic reactivity of these complexes scales with the Lewis acidity of the carbenium moiety. These results support the role of the carbenium unit as a non-innocent functionality which can readily enhance the activity of the adjacent metal center. Finally, we also describe our efforts toward the generation and isolation of free γ-cationic phosphines of general formula [( o -Ph 2 P(C 6 H 4 )Carb)] + . While cyclization into phosphonium species is observed for Carb + = [C(Ar N ) 2 ] + , [C(Ph)(Ar N )] + , and 9-xanthylium, [( o -Ph 2 P(C 6 H 4 )-9- N -methylacridinium)] + can be isolated as an air stable, biphilic derivative with uncompromised Lewis acidic and basic properties. 
    more » « less