skip to main content


Title: Interactive effects of elevated CO2 , warming, reduced rainfall, and nitrogen on leaf gas exchange in five perennial grassland species
Abstract

Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi‐factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open‐air experiment in Minnesota, USA, including elevated CO2(eCO2), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context‐dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.

 
more » « less
Award ID(s):
1831944 1725683 1753859
NSF-PAR ID:
10456362
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant, Cell & Environment
Volume:
43
Issue:
8
ISSN:
0140-7791
Page Range / eLocation ID:
p. 1862-1878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.

    This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).

    Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.

    Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.

     
    more » « less
  2. Abstract

    Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought.

     
    more » « less
  3. Abstract

    Warming‐induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2) over comparatively short timescales. Using an automated sensor system, we measured soil CO2flux dynamics in the Colorado Desert—a system characterized by pronounced transitions from dry‐to‐wet soil conditions—through a multi‐year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2pulses following wetting were highly predictable from peak instantaneous CO2flux measurements. CO2pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2pulses in low N deposition sites, whereas adding N decreased CO2pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2fluxes reported globally at 299.5 μmol CO2 m−2 s−1. Our results suggest that soils have the capacity to emit high amounts of CO2within small timeframes following infrequent wetting, and pulse sizes reflect a non‐linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2emissions occurred when multiple resources were amended simultaneously in historically resource‐limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.

     
    more » « less
  4. Abstract

    We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water‐use efficiency with elevated CO2and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C‐nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2and climate change.

     
    more » « less
  5. Premise

    The impact of elevated CO2concentration ([CO2]) and climate warming on plant productivity in dryland ecosystems is influenced strongly by soil moisture availability. We predicted that the influence of warming on the stimulation of photosynthesis by elevated [CO2] in prairie plants would operate primarily through direct and indirect effects on soil water.

    Methods

    We measured light‐saturated photosynthesis (Anet), stomatal conductance (gs), maximum Rubisco carboxylation rate (Vcmax), maximum electron transport capacity (Jmax) and related variables in four C3plant species in the Prairie Heating and CO2Enrichment (PHACE) experiment in southeastern Wyoming. Measurements were conducted over two growing seasons that differed in the amount of precipitation and soil moisture content.

    Results

    Anetin the C3subshrubArtemisia frigidaand the C3forbSphaeralcea coccineawas stimulated by elevated [CO2] under ambient and warmed temperature treatments. Warming by itself reducedAnetin all species during the dry year, but stimulated photosynthesis inS. coccineain the wet year. In contrast,Anetin the C3grassPascopyrum smithiiwas not stimulated by elevated [CO2] or warming under wet or dry conditions. Photosynthetic downregulation under elevated [CO2] in this species countered the potential stimulatory effect under improved water relations. Warming also reduced the magnitude of CO2‐induced down‐regulation in this grass, possibly by sustaining high levels of carbon utilization.

    Conclusions

    Direct and indirect effects of elevated [CO2] and warming on soil water was an overriding factor influencing patterns ofAnetin this semi‐arid temperate grassland, emphasizing the important role of water relations in driving grassland responses to global change.

     
    more » « less