skip to main content

Title: Strong photosynthetic acclimation and enhanced water‐use efficiency in grassland functional groups persist over 21 years of CO 2 enrichment, independent of nitrogen supply

Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought.

more » « less
Award ID(s):
1725683 1831944 1753859
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Page Range / eLocation ID:
p. 3031-3044
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi‐factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open‐air experiment in Minnesota, USA, including elevated CO2(eCO2), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context‐dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.

    more » « less
  2. Abstract

    Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.

    This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).

    Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.

    Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.

    more » « less
  3. Summary

    Mesophyll conductance (gm) is the diffusion ofCO2from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3species,gmis influenced by diverse leaf structural and anatomical traits; however, little is known about traits affectinggmin C4species.

    To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimategmand microscopy techniques to measure leaf structural and anatomical traits potentially related togmin 18 C4grasses.

    In this study,gmscaled positively with photosynthesis and intrinsic water‐use efficiency (TEi), but not with stomatal conductance. Also,gmwas not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada), stomatal ratio (SR), mesophyll surface area exposed toIAS(Smes) and leaf thickness. However,gmwas not related to abaxial stomatal densities (SDaba) and mesophyll cell wall thickness (TCW).

    Our study suggests that greaterSDadaandSRincreasedgmby increasingSmesand creating additional parallel pathways forCO2diffusion inside mesophyll cells. Thus,SDada,SRandSmesare important determinants of C4gmand could be the target traits selected or modified for achieving greatergmandTEiin C4species.

    more » « less
  4. Abstract

    Increasing water‐use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2(ca). Existing theory and empirical evidence suggest a proportional WUE increase in response to risingcaas plants maintain a relatively constant ratio between the leaf intercellular (ci) and ambient (ca) partial CO2pressure (ci/ca). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2effects on WUE on longer time‐scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long‐term WUE responses tocaand climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously risingca. This finding is consistent with a passive physiological response tocaand coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi‐decadal time‐scales and did not maintain a constantci/cain response to risingcaindicating that a point was reached where rising CO2had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.

    more » « less
  5. We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2(Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Cawas a dominant environmental driver of iWUE, the effects of increasing Cawere modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon–oxygen isotope approach revealed that increases inAnetdominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases inAnet, whereas reductions ingsoccurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Caand other environmental factors have important implications for the coupled carbon–hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions ingsas the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.

    more » « less