skip to main content


Title: We investigate a novel duality for scalar Gaussian multiple access channels and broadcast channels. The duality we explore is based on shared partial information quantities (e.g. synergy and redundancy). Using lattice theory, we establish a crossover correspondence of the synergistic and redundant components between these two channels. The dual channels are similar to the traditional pairs based on capacity regions, though the pairs we identify have equal transmission powers instead of a sum constraint relating transmission powers.
Award ID(s):
1566513
NSF-PAR ID:
10201609
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Symposium on Information Theory and Its Applications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased power consumption of high-resolution data converters at higher carrier frequencies and larger bandwidths is becoming a bottleneck for communication systems. In this paper, we consider a fully digital base station equipped with 1-bit analog-to-digital (in uplink) and digital-to-analog (in downlink) converters on each radio frequency chain. The base station communicates with multiple single antenna users with individual SINR constraints. We first establish the uplink downlink duality principle under 1-bit hardware constraints under an uncorrelated quantization noise assumption. We then present a linear solution to the multi-user downlink beamforming problem based on the uplink downlink duality principle. The proposed solution takes into account the hardware constraints and jointly optimizes the downlink beamformers and the power allocated to each user. Optimized dithering obtained by adding dummy users to the true system users ensures that the uncorrelated quantization noise assumption is true under realistic settings. Detailed simulations carried out using 3GPP channel models generated from Quadriga show that our proposed solution outperforms state of the art solutions in terms of the ergodic sum and minimum rate especially when the number of users is large. We also demonstrate that the proposed solution significantly reduces the performance gap from non-linear solutions in terms of the uncoded bit error rate at a fraction of the computational complexity. 
    more » « less
  2. null (Ed.)
    In this paper, we develop a conceptually unified approach for characterizing and determining scattering poles and interior eigenvalues for a given scattering problem. Our approach explores a duality stemming from interchanging the roles of incident and scattered fields in our analysis. Both sets are related to the kernel of the relative scattering operator mapping incident fields to scattered fields, corresponding to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Our discussion includes the scattering problem for a Dirichlet obstacle where duality is between scattering poles and Dirichlet eigenvalues, and the inhomogeneous scattering problem where the duality is between scattering poles and transmission eigenvalues. Our new characterization of the scattering poles suggests a numerical method for their computation in terms of scattering data for the corresponding interior scattering problem. 
    more » « less
  3. Abstract

    The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+(m/z73), C2H5O+(m/z45), and C2H4O+(m/z44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.

     
    more » « less