skip to main content

Title: Dissociative photoionization of 1,3‐dioxolane: We need six channels to fit the elephant

The dissociative photoionization of 1,3‐dioxolane was studied by photoelectron photoion coincidence (PEPICO) spectroscopy in the photon energy range of 9.5–13.5 eV. Our statistical thermodynamics model shows that a total of six dissociation channels are involved in the formation of three fragment ions, namely, C3H5O2+(m/z73), C2H5O+(m/z45), and C2H4O+(m/z44), with two channels contributing to the formation of each. By comparing the results of ab initio quantum chemical calculations to the experimentally derived appearance energies of the fragment ions, the most likely mechanisms for these unimolecular dissociation reactions are proposed, including a description of the relevant parts of the potential energy surface.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Mass Spectrometry
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  2. Abstract

    We recently reported a detailed investigation of the collision‐induced dissociation (CID) of [UO2(NO3)3]and [UO2(NO3)2(O2)]in a linear ion trap mass spectrometer (J. Mass Spectrom. DOI:10.1002/jms.4705). Here, we describe the CID of [UO2(NO3)(O2)]which is created directly by ESI, or indirectly by simple elimination of O2from [UO2(NO3)(O2)2]. CID of [UO2(NO3)(O2)]creates product ions as atm/z332 andm/z318. The former may be formed directly by elimination of O2, while the latter required decomposition of a nitrate ligand and elimination of NO2. DFT calculations identify a pathway by which both product ions can be generated, which involves initial isomerization of [UO2(NO3)(O2)]to create [UO2(O)(NO2)(O2)], from which elimination of NO2or O2will leave [UO2(O)(O2)]or [UO2(O)(NO2)], respectively. For the latter product ion, the composition assignment of [UO2(O)(NO2)]rather than [UO2(NO3)]is supported by ion‐molecule reaction behavior, and in particular, the fact that spontaneous addition of O2, which is predicted to be the dominant reaction pathway for [UO2(NO3)]is not observed. Instead, the species reacts with H2O, which is predicted to be the favored pathway for [UO2(O)(NO2)]. This result in particular demonstrates the utility of ion‐molecule reactions to assist the determination of ion composition. As in our earlier study, we find that ions such as [UO2(O)(NO2)]and [UO2(O)(O2)]form H2O adducts, and calculations suggest these species spontaneously rearrange to create dihydroxides.

    more » « less
  3. Key points

    Vascular oxidative stress increases with advancing age.

    We hypothesized that resistance vessels develop resilience to oxidative stress to protect functional integrity and tested this hypothesis by exposing isolated pressurized superior epigastric arteries (SEAs) of old and young mice to H2O2.

    H2O2‐induced death was greater in smooth muscle cells (SMCs) than endothelial cells (ECs) and lower in SEAs from oldvs. young mice; the rise in vessel wall [Ca2+]iinduced by H2O2was attenuated with ageing, as was the decline in noradrenergic vasoconstriction; genetic deletion of IL‐10 mimicked the effects of advanced age on cell survival.

    Inhibiting NO synthase or scavenging peroxynitrite reduced SMC death; endothelial denudation or inhibiting gap junctions increased SMC death; delocalization of cytochrome C activated caspases 9 and 3 to induce apoptosis.

    Vascular cells develop resilience to H2O2during ageing by preventing Ca2+overload and endothelial integrity promotes SMC survival.


    Advanced age is associated with elevated oxidative stress and can protect the endothelium from cell death induced by H2O2. Whether such protection occurs for intact vessels or differs between smooth muscle cell (SMC) and endothelial cell (EC) layers is unknown. We tested the hypothesis that ageing protects SMCs and ECs during acute exposure to H2O2(200 µm, 50 min). Mouse superior epigastric arteries (SEAs; diameter, ∼150 µm) were isolated and pressurized to 100 cmH2O at 37˚C. For SEAs from young (4 months) mice, H2O2killed 57% of SMCs and 11% of ECs in malesvs. 8% and 2%, respectively, in females. Therefore, SEAs from males were studied to resolve the effect of ageing and experimental interventions. For old (24 months) mice, SMC death was reduced to 10% with diminished accumulation of [Ca2+]iin the vessel wall during H2O2exposure. In young mice, genetic deletion of IL‐10 mimicked the protective effect of ageing on cell death and [Ca2+]iaccumulation. Whereas endothelial denudation or gap junction inhibition (carbenoxolone; 100 µm) increased SMC death, inhibiting NO synthase (l‐NAME, 100 µm) or scavenging peroxynitrite (FeTPPS, 5 µm) reduced SMC death along with [Ca2+]i. Despite NO toxicity via peroxynitrite formation, endothelial integrity protects SMCs. Caspase inhibition (Z‐VAD‐FMK, 50 µm) attenuated cell death with immunostaining for annexin V, cytochrome C, and caspases 3 and 9 pointing to induction of intrinsic apoptosis during H2O2exposure. We conclude that advanced age reduces Ca2+influx that triggers apoptosis, thereby promoting resilience of the vascular wall during oxidative stress.

    more » « less
  4. The dissociative photoionization processes of methyl hydroperoxide (CH 3 OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH 3 OOH + ions dissociate into CH 2 OOH + , HCO + , CH 3 + , and H 3 O + ions in the 11.4–14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest “QOOH” radical, CH 2 OOH + . An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH 2 OOH + ion, and a 74.2 ± 2.6 kJ mol –1 mixed experimental-theoretical 0 K heat of formation for the CH 2 OOH radical. The proton affinity of the Criegee intermediate, CH 2 OO, was also obtained from the heat of formation of CH 2 OOH + (792.8 ± 0.9 kJ mol –1 ) to be 847.7 ± 1.1 kJ mol –1 , reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes were used to model the higher-energy fragmentation. Supported by Born–Oppenheimer molecular dynamics simulations, we found that the HCO + fragment ion is produced through a roaming transition state followed by a low barrier. H 3 O + is formed in a consecutive process from the CH 2 OOH + fragment ion, while direct C–O fission of the molecular ion leads to the methyl cation. 
    more » « less
  5. Abstract

    Dwarf galaxies are found to have lost most of their metals via feedback processes; however, there still lacks consistent assessment on the retention rate of metals in their circumgalactic medium (CGM). Here we investigate the metal content in the CGM of 45 isolated dwarf galaxies withM*= 106.5–9.5M(M200m= 1010.0–11.5M) using the Hubble Space Telescope/Cosmic Origins Spectrograph. While Hi(Lyα) is ubiquitously detected (89%) within the CGM, we find low detection rates (≈5%–22%) in Cii, Civ, Siii, Siiii, and Siiv, largely consistent with literature values. Assuming these ions form in the cool (T≈ 104K) CGM with photoionization equilibrium, the observed Hiand metal column density profiles can be best explained by an empirical model with low gas density and high volume filling factor. For a typical galaxy withM200m= 1010.9M(median of the sample), our model predicts a cool gas mass ofMCGM,cool∼ 108.4M, corresponding to ∼2% of the galaxy’s baryonic budget. Assuming a metallicity of 0.3 Z, we estimate that the dwarf galaxy’s cool CGM likely harbors ∼10% of the metals ever produced, with the rest either in more ionized states in the CGM or transported to the intergalactic medium. We further examine the EAGLE simulation and show that Hiand low ions may arise from a dense cool medium, while Civarises from a diffuse warmer medium. Our work provides the community with a uniform data set on dwarf galaxies’ CGM that combines our recent observations, additional archival data and literature compilation, which can be used to test various theoretical models of dwarf galaxies.

    more » « less