skip to main content

Title: Federated Patient Hashing
Privacy concerns on sharing sensitive data across institutions are particularly paramount for the medical domain, which hinders the research and development of many applications, such as cohort construction for cross-institution observational studies and disease surveillance. Not only that, the large volume and heterogeneity of the patient data pose great challenges for retrieval and analysis. To address these challenges, in this paper, we propose a Federated Patient Hashing (FPH) framework, which collaboratively trains a retrieval model stored in a shared memory while keeping all the patient-level information in local institutions. Specifically, the objective function is constructed by minimization of a similarity preserving loss and a heterogeneity digging loss, which preserves both inter-data and intra-data relationships. Then, by leveraging the concept of Bregman divergence, we implement optimization in a federated manner in both centralized and decentralized learning settings, without accessing the raw training data across institutions. In addition to this, we also analyze the convergence rate of the FPH framework. Extensive experiments on real-world clinical data set from critical care are provided to demonstrate the effectiveness of the proposed method on similar patient matching across institutions.
Authors:
; ; ;
Award ID(s):
1750326 1716432
Publication Date:
NSF-PAR ID:
10201785
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
04
Page Range or eLocation-ID:
6486 to 6493
ISSN:
2159-5399
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintainingmore »data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications.« less
  2. Cross-modal retrieval aims to learn discriminative and modal-invariant features for data from different modalities. Unlike the existing methods which usually learn from the features extracted by offline networks, in this paper, we pro- pose an approach to jointly train the components of cross- modal retrieval framework with metadata, and enable the network to find optimal features. The proposed end-to-end framework is updated with three loss functions: 1) a novel cross-modal center loss to eliminate cross-modal discrepancy, 2) cross-entropy loss to maximize inter-class variations, and 3) mean-square-error loss to reduce modality variations. In particular, our proposed cross-modal center loss minimizes themore »distances of features from objects belonging to the same class across all modalities. Extensive experiments have been conducted on the retrieval tasks across multi-modalities including 2D image, 3D point cloud and mesh data. The proposed framework significantly outperforms the state-of-the-art methods for both cross-modal and in-domain retrieval for 3D objects on the ModelNet10 and ModelNet40 datasets.« less
  3. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updatingmore »or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods.« less
  4. Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping datamore »on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.« less
  5. Electronic medical records (EMR) contain comprehensive patient information and are typically stored in a relational database with multiple tables. Effective and efficient patient information retrieval from EMR data is a challenging task for medical experts. Question-to-SQL generation methods tackle this problem by first predicting the SQL query for a given question about a database, and then, executing the query on the database. However, most of the existing approaches have not been adapted to the healthcare domain due to a lack of healthcare Question-to-SQL dataset for learning models specific to this domain. In addition, wide use of the abbreviation of terminologiesmore »and possible typos in questions introduce additional challenges for accurately generating the corresponding SQL queries. In this paper, we tackle these challenges by developing a deep learning based TRanslate-Edit Model for Question-to-SQL (TREQS) generation, which adapts the widely used sequence-to-sequence model to directly generate the SQL query for a given question, and further performs the required edits using an attentive-copying mechanism and task-specific look-up tables. Based on the widely used publicly available electronic medical database, we create a new large-scale Question-SQL pair dataset, named MIMICSQL, in order to perform the Question-to-SQL generation task in healthcare domain. An extensive set of experiments are conducted to evaluate the performance of our proposed model on MIMICSQL. Both quantitative and qualitative experimental results indicate the flexibility and efficiency of our proposed method in predicting condition values and its robustness to random questions with abbreviations and typos.« less