skip to main content


Title: The intimate and controversial relationship between voltage‐gated proton channels and the phagocyte NADPH oxidase
Summary

One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage‐gated proton channels (HV1). By the time I entered this field, there had already been substantial progress toward understandingNADPHoxidase, but HV1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then‐recent discoveries of Henderson, Chappell, and colleagues in 1987–1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane:NADPHoxidase moves electrons and HV1 moves protons. The consequences of electrogenicNADPHoxidase activity on both membrane potential and pH strongly self‐limit this enzyme. Fortunately, both consequences specifically activate HV1, and HV1 activity counteracts both consequences, a kind of yin–yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship betweenNADPHoxidase and HV1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyteNADPHoxidase – an industrial strength producer of reactive oxygen species (ROS) – to myriad other cells that produce orders of magnitude lessROSfor signaling purposes. These cells with their sevenNADPHoxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.

 
more » « less
NSF-PAR ID:
10201815
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Immunological Reviews
Volume:
273
Issue:
1
ISSN:
0105-2896
Page Range / eLocation ID:
p. 194-218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant‐wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+and electrical signaling (‘trio signaling’) appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as theROSproducingNAPDHoxidaseRBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor‐like channelsGLR3.3 andGLR3.6. The plant cell wall presents a plant‐specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such asROSor H+remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell‐to‐cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.

     
    more » « less
  2. Summary

    We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).

    Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.

    AtCCCGFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.

    Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.

     
    more » « less
  3. Abstract

    Bioluminescence in dinoflagellates is controlled byHV1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmedHV1, and show thatHV1 is widely distributed in the dinoflagellate phylogeny including the basal speciesOxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies ofHV1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express aHV1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than oneHV1 gene.

     
    more » « less
  4. While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensityPARon the bloom‐forming dinoflagellatesAlexandrium fundyenseandHeterocapsa rotundata. Various physiological parameters (photosynthetic efficiencyFv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐acontent) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to highPAR. While high light decreasedFv/Fmin both species,A. fundyenseshowed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellularDMSPindicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐ainversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells.Heterocapsa rotundatacells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasingDMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐acontent. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.

     
    more » « less
  5. Abstract

    Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between threeMechanosensitive channel ofSmall conductance‐Like (MSL) proteins fromArabidopsis thaliana.MSLproteins areArabidopsishomologs of the bacterialMechanosensitivechannel ofSmall conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock.MSL1 localizes to the inner mitochondrial membrane, whileMSL2 andMSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion inMSL1, both in wild type and inmsl2 msl3mutant backgrounds.msl1single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling inmsl2 msl3double mutants was exacerbated in themsl1 msl2 msl3triple mutant. However, the introduction of themsl1lesion into themsl2 msl3mutant background suppressed othermsl2 msl3mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version ofMSL1. In yeast‐based interaction studies,MSL1 interacted with itself, but not withMSL2 orMSL3. These results establish that the abnormalities observed inmsl2 msl3double mutants is partially dependent on the presence of functionalMSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.

     
    more » « less