skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic criticality for infrastructure prioritization in complex environments
Abstract As infrastructure confront rapidly changing environments, there is an immediate need to provide the flexibility to pivot resources and how infrastructures are prioritized. Yet infrastructures are often categorized based on static criticality framings. We describedynamic criticalityas the flexibility to reprioritize infrastructure resources during disturbances. We find that the most important prerequisite for dynamic criticality is organizational adaptive capacity characterized by flexible goals, structures, sensemaking, and strategies. Dynamic capabilities are increasingly important in the Anthropocene, where accelerating conditions, uncertainty, and growing complexity are challenging infrastructures. We review sectors that deployed dynamic management approaches amidst changing disturbances: leadership and organizational change, defense, medicine, manufacturing, and disaster response. We use an inductive thematic analysis to identify key themes and competencies and analyze capabilities that describe dynamic criticality. These competencies drive adaptive capacity and open up the flexibility to pivot what is deemed critical, depending on the particulars of the hazard. We map these competencies to infrastructure systems and describe how infrastructure organizations may build adaptive capacity toward flexible priorities.  more » « less
Award ID(s):
1828010 1934933
PAR ID:
10402687
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
3
Issue:
1
ISSN:
2634-4505
Page Range / eLocation ID:
Article No. 015011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transitioning infrastructure governance for accelerating, increasingly uncertain, and increasingly complex environments is paramount for ensuring that critical and basic services are met during times of stability and instability. Yet the bureaucratic structures that dominate infrastructure organizations and their capacity to respond to increasing complexity remain poorly understood. To change infrastructure governance, it is critical to understand current conditions, the barriers to change, and the strategies needed to shift priorities and leadership strategy. The emergence of modern infrastructure bureaucratic and organizational structure is first explored. The need to rethink infrastructure as knowledge enterprises capable of making sense of changing conditions, and not simply as basic service providers, is discussed. Next, transformation of infrastructure governance is presented as both a challenge of organizational change as identity and power and leadership capacity to shift between stable and unstable conditions. Infrastructure bureaucracies should create capabilities to shift between periods of stability and instability, emphasizing flexibility where ad hoc teams are given power to make sense of changing conditions and steer the organization appropriately. Additionally, several critical factors must be addressed within organizational power structures, identities, and processes to facilitate change. Allowing infrastructure governance to persist in its current form is likely increasingly problematic for the future and may result in an increasing inability to maintain relevance. 
    more » « less
  2. Abstract Infrastructure systems must change to match the growing complexity of the environments they operate in. Yet the models of governance and the core technologies they rely on are structured around models of relative long-term stability that appear increasingly insufficient and even problematic. As the environments in which infrastructure function become more complex, infrastructure systems must adapt to develop a repertoire of responses sufficient to respond to the increasing variety of conditions and challenges. Whereas in the past infrastructure leadership and system design has emphasized organization strategies that primarily focus on exploitation (e.g., efficiency and production, amenable to conditions of stability), in the future they must create space for exploration, the innovation of what the organization is and does. They will need to create the abilities to maintain themselves in the face of growing complexity by creating the knowledge, processes, and technologies necessary to engage environment complexity. We refer to this capacity asinfrastructure autopoiesis. In doing so infrastructure organizations should focus on four key tenets. First, a shift to sustained adaptation—perpetual change in the face of destabilizing conditions often marked by uncertainty—and away from rigid processes and technologies is necessary. Second, infrastructure organizations should pursue restructuring their bureaucracies to distribute more resources and decisionmaking capacity horizontally, across the organization’s hierarchy. Third, they should build capacity for horizon scanning, the process of systematically searching the environment for opportunities and threats. Fourth, they should emphasize loose fit design, the flexibility of assets to pivot function as the environment changes. The inability to engage with complexity can be expected to result in a decoupling between what our infrastructure systems can do and what we need them to do, and autopoietic capabilities may help close this gap by creating the conditions for a sufficient repertoire to emerge. 
    more » « less
  3. Leadership is a critical component in approaching infrastructure resilience. Leadership, the formal and informal governance within an organization, drives an infrastructure system's ability to respond to changing circumstances. Due to the instability of the Anthropocene, infrastructure managers (individuals who design, build, maintain, and decommission infrastructure) can no longer rely on assumptions of stationarity, but instead that shifts are occurring at a faster rate than institutions and infrastructure organizations are adapting. Leadership and organizational change literature provide considerable insights into the ability of organizations to navigate uncertainty and complexity, and infrastructure organizations may be able to learn from this knowledge to avoid obsolescence. Therefore, this article asks: what leadership capabilities do infrastructure organizations need to readily respond to stability and instability? An integrative leadership framework is proposed, exploring capabilities of collaboration, perception and exploration toward learning, and flexible informal and formal governance leveraged by leadership. These capabilities are driven by underlying tensions (e.g., climate change, emerging technologies) and managed through enabling leadership, a set of processes for pivoting between stability and instability. The framework is then applied to infrastructure organizations. Lack of market competition may make infrastructure organizations more open to collaboration and, therefore, learning. However, the need to provide specific services may cause risk adversity and an avoidance of failure, restricting flexibility and innovation. It is critical for infrastructure organizations to identify their strengths and weaknesses so they may develop an approach to change at pace with their external environments. 
    more » « less
  4. Physical infrastructures that facilitate e.g., delivery of power, water and communication capabilities are of intrinsic importance in our daily lives. Accurate maps of physical infrastructures are important for permitting, maintenance, repair and growth but can be considered a commercial and/or security risk. In this paper, we describe a method for obfuscating physical infrastructure maps that removes sensitive details while preserving key features that are important in commercial and research applications. We employ a three-tiered approach: tier 1 does simple location fuzzing, tier 2 maintains connectivity details but randomizes node/link locations, while at tier 3 only distributional properties of a network are preserved. We implement our tiered approach in a tool called Bokeh which operates on GIS shapefiles that include detailed location information of infrastructure and produces obfuscated maps. We describe a case study that applies Bokeh to a number of Internet Service Provider maps. The case study highlights how each tier removes increasing amounts of detail from maps. We discuss how Bokeh can be generally applied to other physical infrastructures or in local services that are increasingly used for e-marketing. 
    more » « less
  5. Abstract Uncertainty arising from climate change poses a central challenge to the long‐term performance of many engineered water systems. Water supply infrastructure projects can leverage different types of flexibility, in planning, design, or operations, to adapt infrastructure systems in response to climate change over time. Both flexible planning and design enable future capacity expansion if‐and‐when needed, with flexible design proactively incorporating physical design changes that enable retrofits. All three forms of flexibility have not previously been analyzed together to explicitly assess their relative value in mitigating cost and water supply reliability risk. In this paper, we propose a new framework to evaluate combinations of flexible planning, design, and operations. We develop a nested stochastic dynamic optimization approach that jointly optimizes dam development and operating policies under dynamic climate uncertainty. We demonstrate this approach on a reservoir project near Mombasa, Kenya. Our results find that flexible operations have the greatest potential to reduce costs. Flexible design and flexible planning can amplify the value of flexible operations under higher discounting scenarios and when initial infrastructure capacities are undersized. This approach provides insight on the climate change and techno‐economic conditions under which flexible planning, design, and operations can be best leveraged individually or in combination to reduce climate change uncertainty risks in water supply infrastructure projects. 
    more » « less