skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The impact of nitrogen oxides on electrochemical carbon dioxide reduction
Abstract

The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts.

 
more » « less
Award ID(s):
1803200
NSF-PAR ID:
10202061
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The removal of carbon dioxide from the atmosphere by the marine biological pump is a key regulator of Earth’s climate; however, the ocean also serves as a large source of nitrous oxide, a potent greenhouse gas and ozone-depleting substance. Although biological carbon sequestration and nitrous oxide production have been individually studied in the ocean, their combined impacts on net greenhouse forcing remain uncertain. Here we show that the magnitude of nitrous oxide production in the epipelagic zone of the subtropical ocean covaries with remineralization processes and thus acts antagonistically to weaken the radiative benefit of carbon removal by the marine biological pump. Carbon and nitrogen isotope tracer incubation experiments and nitrogen isotope natural abundance data indicate enhanced biological activity promotes nitrogen recycling, leading to substantial nitrous oxide production via both oxidative and reductive pathways. These shallow-water nitrous oxide sources account for nearly half of the air–sea flux and counteract 6–27% (median 9%) of the greenhouse warming mitigation achieved by carbon export via the biological pump.

     
    more » « less
  2. Improving the management of nitrogen fertilizer makes sense. It can reduce farm costs by increasing nitrogen use efficiency without reducing yields. It can also benefit our environment by reducing the emissions of a potent greenhouse gas called nitrous oxide. Better still, by improving nitrogen management, farmers can receive payment for reducing emissions of this gas through the market place. Agriculture is a source and a sink for greenhouse gases that affect our climate. All three of the major greenhouse gases are produced naturally in agricultural soils—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Nitrous oxide is the most important in all field crops but rice due to its link with the use of nitrogen fertilizer. 
    more » « less
  3. Abstract

    Development of efficient catalysts for selective electroreduction of CO2to high-value products is essential for the deployment of carbon utilization technologies. Here we present a scalable method for preparing Cu electrocatalysts that favor CO2conversion to C2+products with faradaic efficiencies up to 72%. Grazing-incidence X-ray diffraction data confirms that anodic halogenation of electropolished Cu foils in aqueous solutions of KCl, KBr, or KI creates surfaces of CuCl, CuBr, or CuI, respectively. Scanning electron microscopy and energy dispersive X-ray spectroscopy studies show that significant changes to the morphology of Cu occur during anodic halogenation and subsequent oxide-formation and reduction, resulting in catalysts with a high density of defect sites but relatively low roughness. This work shows that efficient conversion of CO2to C2+products requires a Cu catalyst with a high density of defect sites that promote adsorption of carbon intermediates and C–C coupling reactions while minimizing roughness.

     
    more » « less
  4. Abstract

    Wildfires are important sources of atmospheric reactive nitrogen. The reactive nitrogen species partitioning generally depends on fire characteristics. One reactive nitrogen compound, nitrous acid (HONO), is a source of hydroxyl radicals and nitric oxide, which can impact the oxidizing capacity of the atmosphere and fire plume chemistry and composition. We study the Australian wildfire season of 2019–2020, known as Black Summer, where numerous large and intense wildfires burned throughout the continent. We use HONO and nitrogen dioxide (NO2) from the TROPOspheric Monitoring Instrument (TROPOMI) and fire radiative power (FRP) from the Visible Infrared Imaging Radiometer Suite to investigate HONO and NO2relationships with fire characteristics. The ratio of HONO to NO2increases linearly with FRP both in Australia and globally. Both Australian and global fire relationships depend strongly on land cover type. These relationships can be applied to emission inventories to improve wildfire emission representation in models.

     
    more » « less
  5. Abstract

    The electrochemical carbon dioxide reduction reaction (CO2RR) presents a viable approach to recycle CO2gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH4) and high efficiency for ethylene (C2H4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH4production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C2H4production at −0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO2RR performance on SD‐Cu NPs.

     
    more » « less