Abstract Recent gravitational wave (GW) observations include possible detections of black hole—neutron star binary mergers. As with binary black hole mergers, numerical simulations help characterize the sources. For binary systems with neutron star components, the simulations help to predict the imprint of tidal deformations and disruptions on the GW signals. In a previous study, we investigated how the mass of the black hole has an impact on the disruption of the neutron star and, as a consequence, on the shape of the GWs emitted. We extend these results to study the effects of varying the compactness of the neutron star. We consider neutron star compactness in the 0.113–0.2 range for binaries with mass ratios of 3 and 5. As the compactness and the mass ratio increase, the binary system behaves during the late inspiral and merger more like a black hole binary. For the cases with the least compact neutron star, the GWs emitted, in terms of mismatches, are the most distinguishable from those by a binary black hole. The disruption of the star significantly suppresses the kicks on the final black hole. The disruption also affects, although not dramatically, the spin of the final black hole. Lastly, for neutron stars with low compactness, the quasi-normal ringing of the black hole after the merger does not show a clean quasi-normal ringing because of the late accretion of debris from the neutron star.
more »
« less
Post-merger chirps from binary black holes as probes of the final black-hole horizon
Abstract The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a “cusp”-like defect on the horizon of the final black hole correlates with “chirp”-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational.
more »
« less
- Award ID(s):
- 1828187
- PAR ID:
- 10202177
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present fully general relativistic simulations of the quasi-circular inspiral and merger of charged, non-spinning, binary black holes with charge-to-mass ratio λ≤0.3. We discuss the key features that enabled long term and stable evolutions of these binaries. We also present a formalism for computing the angular momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole horizon properties. We implement our formalism and present the results for the first time in numerical-relativity simulations. In addition, we compare our full non-linear solutions with existing approximate models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole approximation have errors of 20 % - 100 % in key gauge-invariant quantities. On the other hand, for the systems considered, we find that estimates of the remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown signal or the ringdown signal alone.more » « less
-
Abstract The population of binary black hole mergers identified through gravitational waves has uncovered unexpected features in the intrinsic properties of black holes in the universe. One particularly surprising and exciting result is the possible existence of black holes in the pair-instability mass gap, ∼50–120 M ⊙ . Dense stellar environments can populate this region of mass space through hierarchical mergers, with the retention efficiency of black hole merger products strongly dependent on the escape velocity of the host environment. We use simple toy models to represent hierarchical merger scenarios in various dynamical environments. We find that hierarchical mergers in environments with high escape velocities (≳300 km s −1 ) are efficiently retained. If such environments dominate the binary black hole merger rate, this would lead to an abundance of high-mass mergers that is potentially incompatible with the empirical mass spectrum from the current catalog of binary black hole mergers. Models that efficiently generate hierarchical mergers, and contribute significantly to the observed population, must therefore be tuned to avoid a “cluster catastrophe” of overproducing binary black hole mergers within and above the pair-instability mass gap.more » « less
-
We show that reactive molecules with a unit probability of reaction naturally provide a simulator of some intriguing black hole physics. The unit reaction at the short distance acts as an event horizon and delivers a one-way traffic for matter waves passing through the potential barrier when two molecules interact by high partial-wave scatterings or dipole-dipole interactions. In particular, the scattering rate as a function of the incident energy exhibits a thermal-like distribution near the maximum of the interaction energy in the same manner as a scalar field scatters with the potential barrier outside the event horizon of a black hole. Such a thermal-like scattering can be extracted from the temperature-dependent two-body loss rate measured in experiments on KRb and other molecules.more » « less
-
Abstract Repeated mergers of stellar-mass black holes in dense star clusters can produce intermediate-mass black holes (IMBHs). In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the black hole (BH) merger products, in spite of the significant recoil kicks due to anisotropic emission of gravitational radiation. These events can be detected in gravitational waves, which represent an unprecedented opportunity to reveal IMBHs. In this paper, we analyze the statistical results of a wide range of numerical simulations, which encompass different cluster metallicities, initial BH seed masses, and initial BH spins, and we compute the merger rate of IMBH binaries. We find that merger rates are in the range 0.01–10 Gpc −3 yr −1 depending on IMBH masses. We also compute the number of multiband detections in ground-based and space-based observatories. Our model predicts that a few merger events per year should be detectable with LISA, DECIGO, Einstein Telescope (ET), and LIGO for IMBHs with masses ≲1000 M ⊙ , and a few tens of merger events per year with DECIGO, ET, and LIGO only.more » « less
An official website of the United States government

