skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical-relativity simulations of the quasi-circular inspiral and merger of non-spinning, charged black holes: methods and comparison with approximate approaches
We present fully general relativistic simulations of the quasi-circular inspiral and merger of charged, non-spinning, binary black holes with charge-to-mass ratio λ≤0.3. We discuss the key features that enabled long term and stable evolutions of these binaries. We also present a formalism for computing the angular momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole horizon properties. We implement our formalism and present the results for the first time in numerical-relativity simulations. In addition, we compare our full non-linear solutions with existing approximate models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole approximation have errors of 20 % - 100 % in key gauge-invariant quantities. On the other hand, for the systems considered, we find that estimates of the remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown signal or the ringdown signal alone.  more » « less
Award ID(s):
1912619
PAR ID:
10276494
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital eccentricity (defined at 10 Hz) of e0≳0.1 in the LIGO band (for a total binary mass in the range 65-200M⊙). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes significant for e0≳0.015 (for 200-600M⊙ systems). This eccentricity-induced bias on the final mass and spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR. Hence, eccentric corrections to waveform models are important for constructing a robust test of GR, especially for third-generation detectors. We also estimate the eccentric corrections to the relationship between the inspiral parameters and the final mass and final spin; they are shown to be quite small. 
    more » « less
  2. Abstract Binary black holes are the most abundant source of gravitational-wave observations. Gravitational-wave observatories in the next decade will require tremendous increases in the accuracy of numerical waveforms modeling binary black holes, compared to today’s state of the art. One approach to achieving the required accuracy is using spectral-type methods that scale to many processors. Using theSpECTREnumerical-relativity (NR) code, we present the first simulations of a binary black hole inspiral, merger, and ringdown using discontinuous Galerkin (DG) methods. The efficiency of DG methods allows us to evolve the binary through ∼ 18 orbits at reasonable computational cost. We then useSpECTRE’s Cauchy Characteristic Evolution (CCE) code to extract the gravitational waves at future null infinity. The open-source nature ofSpECTREmeans this is the first time a spectral-type method for simulating binary black hole evolutions is available to the entire NR community. 
    more » « less
  3. ABSTRACT We present a theoretical study of the gravitational wave (GW) driven inspirals of accreting black hole binaries with mass $$M = 10^7 M_\odot$$ and mass ratios between $$10^{-3}$$ and $$10^{-1}$$. Our results are based on analytic estimates, and grid-based hydrodynamics simulations run for many thousands of binary orbits before the merger. We show that the GW inspiral is evident in the light curves and colour evolution of a binary-hosting quasar over years to decades before a merger. The long-term electromagnetic (EM) signature is characterized by a gradual UV brightening and X-ray dimming, followed by an X-ray disappearance hours to days before the GW burst, and finally, a years-like re-brightening as the disc relaxes and refuels the remnant black hole. These time-scales are surprisingly insensitive to the normalization of the kinematic viscosity in the disc. The spectrum of quasi-thermal disc emission shows two peaks: one in the UV and another in the X-ray, associated with the outer and circum-secondary discs, respectively; emission from the inner disc is suppressed because the secondary consumes most of the inflowing gas. We discuss implications for real-time and archival EM follow-up of GW bursts detected by LISA. 
    more » « less
  4. is a method of reducing computational burden in numerical relativity simulations of binary black holes in situations where there is a good analytical model of the geometry around (one or both of) the objects. Two such scenarios of relevance in gravitational-wave astronomy are (1) the case of mass-disparate systems, and (2) the early inspiral when the separation is still large. Here we illustrate the utility and flexibility of this technique with simulations of the fully self-consistent radiative evolution in the model problem of a scalar charge orbiting a Schwarzschild black hole under the effect of scalar-field radiation reaction. We explore a range of orbital configurations, including inspirals with large eccentricity (which we follow through to the final plunge and ringdown) and hyperbolic scattering. 
    more » « less
  5. Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR. 
    more » « less