Abstract Ultralight bosons are a proposed solution to outstanding problems in cosmology and particle physics: they provide a dark-matter candidate while potentially explaining the strong charge-parity problem. If they exist, ultralight bosons can interact with black holes through the superradiant instability. In this work we explore the consequences of this instability on the evolution of hierarchical black holes within dense stellar clusters. By reducing the spin of individual black holes, superradiance reduces the recoil velocity of merging binary black holes, which, in turn, increases the retention fraction of hierarchical merger remnants. We show that the existence of ultralight bosons with mass 2 × 10 −14 ≲ μ /eV ≲ 2 × 10 −13 would lead to an increased rate of hierarchical black hole mergers in nuclear star clusters. An ultralight boson in this energy range would result in up to ≈60% more present-day nuclear star clusters supporting hierarchical growth. The presence of an ultralight boson can also double the rate of intermediate-mass black hole mergers to ≈0.08 Gpc −3 yr −1 in the local universe. These results imply that a select range of ultralight boson masses can have far-reaching consequences for the population of black holes in dense stellar environments. Future studies into black hole cluster populations and the spin distribution of hierarchically formed black holes will test this scenario.
more »
« less
Avoiding a Cluster Catastrophe: Retention Efficiency and the Binary Black Hole Mass Spectrum
Abstract The population of binary black hole mergers identified through gravitational waves has uncovered unexpected features in the intrinsic properties of black holes in the universe. One particularly surprising and exciting result is the possible existence of black holes in the pair-instability mass gap, ∼50–120 M ⊙ . Dense stellar environments can populate this region of mass space through hierarchical mergers, with the retention efficiency of black hole merger products strongly dependent on the escape velocity of the host environment. We use simple toy models to represent hierarchical merger scenarios in various dynamical environments. We find that hierarchical mergers in environments with high escape velocities (≳300 km s −1 ) are efficiently retained. If such environments dominate the binary black hole merger rate, this would lead to an abundance of high-mass mergers that is potentially incompatible with the empirical mass spectrum from the current catalog of binary black hole mergers. Models that efficiently generate hierarchical mergers, and contribute significantly to the observed population, must therefore be tuned to avoid a “cluster catastrophe” of overproducing binary black hole mergers within and above the pair-instability mass gap.
more »
« less
- Award ID(s):
- 2110507
- PAR ID:
- 10427934
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 935
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106M⊙have escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M⊙, with spins set by the details of the growth history. BHs up to about 150M⊙can reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems.more » « less
-
Abstract We propose a Bayesian inference framework to predict the merger history of LIGO-Virgo binary black holes (BHs), whose binary components may have undergone hierarchical mergers in the past. The framework relies on numerical relativity predictions for the mass, spin, and kick velocity of the remnant BHs. This proposed framework computes the masses, spins, and kicks imparted to the remnant of the parent binaries, given the initial masses and spin magnitudes of the binary constituents. We validate our approach by performing an “injection study” based on a constructed sequence of hierarchically formed binaries. Noise is added to the final binary in the sequence, and the parameters of the “parent” and “grandparent” binaries in the merger chain are then reconstructed. This method is then applied to three GWTC-3 events: GW190521, GW200220_061928, and GW190426_190642. These events were selected because at least one of the binary companions lies in the putative pair-instability supernova mass gap, in which stellar processes alone cannot produce BHs. Hierarchical mergers offer a natural explanation for the formation of BHs in the pair-instability mass gap. We use the backward evolution framework to predict the parameters of the parents of the primary companion of these three binaries. For instance, the parent binary of GW190521 has masses and within the 90% credible interval. Astrophysical environments with escape speeds ≥100 km s−1are preferred sites to host these events. Our approach can be readily applied to future high-mass gravitational wave events to predict their formation history under the hierarchical merger assumption.more » « less
-
Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to at 90% CL, where is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024more » « less
-
Abstract One of the proposed channels of binary black hole mergers involves dynamical interactions of three black holes. In such scenarios, it is possible that all three black holes merge in a so-called hierarchical merger chain, where two of the black holes merge first and then their remnant subsequently merges with the remaining single black hole. Depending on the dynamical environment, it is possible that both mergers will appear within the observable time window. Here we perform a search for such merger pairs in the public available LIGO and Virgo data from the O1/O2 runs. Using a frequentist p-value assignment statistics we do not find any significant merger pair candidates, the most significant being GW170809-GW151012 pair. Assuming no observed candidates in O3/O4, we derive upper limits on merger pairs to be ∼11 − 110 year−1Gpc−3, corresponding to a rate that relative to the total merger rate is ∼0.1 − 1.0. From this we argue that both a detection and a non-detection within the next few years can be used to put useful constraints on some dynamical progenitor models.more » « less
An official website of the United States government

