Abstract The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure.
more »
« less
Alloy Nanoparticle Fabrication by Mechanical Approach
Abstract This paper reports the results of preparing alloy nanoparticles by mechanical grinding followed by filtration to sort the particles according to size. Although the long-term goal of this work is to prepare icosahedral quasicrystalline nanoparticles, the alloy used in this study is of Al 65 Cu 25 Fe 15 composition and multi phases, under the assumption that the established procedure is applicable to future quasicrystalline nanoparticle fabrication. The obtained particle size and elemental information were investigated using scanning electron microscopy and energy dispersive x-ray spectroscopy. Problems with filter fragment fall-out and salt contamination were encountered and procedures to address the problems have been suggested and tested. The study is successful in obtaining alloy particles with reduced sizes.
more »
« less
- Award ID(s):
- 1725557
- PAR ID:
- 10202546
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 4
- Issue:
- 44-45
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 2401 to 2408
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, post-synthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively-charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to n-methyl pyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of polyethylene glycol-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15 – 20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12-nm and 20-nm nanoparticles and found to selectively capture larger particles with ~ 90 % selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particlesmore » « less
-
Abstract Co–Mo alloy clusters with extended solubility of Mo in hcp Co were produced by inert gas condensation (IGC). While the equilibrium solubility of Mo in hexagonal close-packed (hcp) Co is on the order of 1 atomic percent, the non-equilibrium aspects of IGC resulted in ~ 18 atomic percent Mo dissolved in hcp Co. The extended solid solutions and hcp structure were observed across all of the processing conditions, which included variation of sputtering power and aperture size. There was, however, variation of nanoparticle size and magnetic behavior with processing parameters. The Co(Mo) nanoparticles were ferromagnetic at room temperature. Coercivities of the nanoparticles produced with a 2.5-mm aperture were independent of sputtering power and significantly higher than those of the nanoparticles produced with a 7-mm aperture. The coercivities of the nanoparticles produced with a 7-mm aperture were slightly power-dependent. Overall, there appeared to be a relationship between coercivity and nanoparticle size.more » « less
-
Bimetallic nanoparticles often show properties superior to their single-component counterparts. However, the large parameter space, including size, structure, composition, and spatial arrangement, impedes the discovery of the best nanoparticles for a given application. High-throughput methods that can control the composition and spatial arrangement of the nanoparticles are desirable for accelerated materials discovery. Herein, we report a methodology for synthesizing bimetallic alloy nanoparticle arrays with precise control over their composition and spatial arrangement. A dual-channel nanopipet is used, and nanofluidic control in the nanopipet further enables precise tuning of the electrodeposition rate of each element, which determines the final composition of the nanoparticle. The composition control is validated by finite element simulation as well as electrochemical and elemental analyses. The scope of the particles demonstrated includes Cu–Ag, Cu–Pt, Au–Pt, Cu–Pb, and Co–Ni. We further demonstrate surface patterning using Cu–Ag alloys with precise control of the location and composition of each pixel. Additionally, combining the nanoparticle alloy synthesis method with scanning electrochemical cell microscopy (SECCM) allows for fast screening of electrocatalysts. The method is generally applicable for synthesizing metal nanoparticles that can be electrodeposited, which is important toward developing automated synthesis and screening systems for accelerated material discovery in electrocatalysis.more » « less
-
Polycaprolactone (PCL) micro- and nanoparticles produced using the electrospraying technique present high drug encapsulation capacity, a controllable surface area, and a good cost–benefit ratio. PCL is also considered a non-toxic polymeric material with excellent biocompatibility and biodegradability. All these characteristics make PCL micro- and nanoparticles a promising material for tissue engineering regeneration, drug delivery, and surface modification in dentistry. In this study, PCL electrosprayed specimens were produced and analyzed to determine their morphology and size. Three PCL concentrations (2, 4, and 6 wt%) and three solvent types (chloroform (CF), dimethylformamide (DMF), and acetic acid (AA)) with various solvent mixtures ratios (1:1 CF/DMF, 3:1 CF/DMF, 100% CF, 1:1 AA/CF, 3:1 AA/CF, and 100% AA) were used while keeping the remaining electrospray parameters constant. SEM images followed by ImageJ analysis showed a change in the morphology and size of the particles among various tested groups. A two-way ANOVA demonstrated a statistically significant interaction (p < 0.001) between PCL concentration and solvents on the size of the particles. With the increase in the PCL concentration, an increase in the number of fibers was observed among all the groups. The morphology and dimensions of the electrosprayed particles, as well as the presence of fibers, were significantly dependent on the PCL concentration, choice of solvent, and solvent ratio.more » « less
An official website of the United States government

