Cell migration is critical throughout a multicellular organism’s life from embryogenesis to immune response and tissue repair and can even go aberrantly wrong in diseases like metastatic cancer. In vitro, graded concentrations of diffusible chemoattractants can guide migrating cells, but less is known about chemoattractant distribution and chemotaxis within living organisms, which have complex tissue geometries. Using the border cells, which migrate collectively in the Drosophila egg chamber during oogenesis, we studied how tissue structure affects chemotaxis in vivo. Live-imaged border cells exhibited variations in their chemotactic migration, which correlated positionally within distinct tissue architectures, specifically acellular gaps at cell-cell intersections. To determine how different regions in the egg chamber’s geometry affect chemical cues, we developed a partial differential equation (PDE) model of chemoattractant distribution within a relevant in silico domain. Using a hybrid mathematical model that couples the chemoattractant PDE and an agent-based motion of the cluster, we found that larger extracellular volumes within intersections could locally dampen chemoattractant gradient magnitudes and slow cluster speed in simulations. In vivo, in response to genetically increasing the levels of a chemoattractant, PDGF- and VEGF-related factor 1, border cells exhibited delayed migration and behaved differently within specific architectural regions, consistent with results in silico. We next altered the architectural regions in the migration domain in half pint (hfp) mutant egg chambers and observed migration behaviors that still correlated with tissue features. Importantly, the abnormal tissue geometry was sufficient to rescue defects due to high levels of chemoattractant and resulted in punctual border cell migration indicating chemoattractant distribution can depend on tissue structure. Our modeling data indicate that chemoattractants are more concentrated in certain tissue architectures and dispersed in other regions, likely informing cell migration speeds and favoring clustered cell movements in tissue that contain varied architectures in vivo. Our results shed light on the intricate interplay between tissue geometry and the local distribution of important signaling molecules in orchestrating the essential process of cell migration.
more »
« less
Tissue topography steers migrating Drosophila border cells
Moving cells can sense and respond to physical features of the microenvironment; however, in vivo, the significance of tissue topography is mostly unknown. Here, we usedDrosophilaborder cells, an established model for in vivo cell migration, to study how chemical and physical information influences path selection. Although chemical cues were thought to be sufficient, live imaging, genetics, modeling, and simulations show that microtopography is also important. Chemoattractants promote predominantly posterior movement, whereas tissue architecture presents orthogonal information, a path of least resistance concentrated near the center of the egg chamber. E-cadherin supplies a permissive haptotactic cue. Our results provide insight into how cells integrate and prioritize topographical, adhesive, and chemoattractant cues to choose one path among many.
more »
« less
- Award ID(s):
- 1707637
- PAR ID:
- 10202555
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 370
- Issue:
- 6519
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 987-990
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cell motility is a critical aspect of several processes, such as wound healing and immunity; however, it is dysregulated in cancer. Current limitations of imaging tools make it difficult to study cell migrationin vivo. To overcome this, and to identify drivers from the microenvironment that regulate cell migration, bioengineers have developed 2D (two‐dimensional) and 3D (three‐dimensional) tissue model systems in which to study cell motilityin vitro, with the aim of mimicking elements of the environments in which cells movein vivo. However, there has been no systematic study to explicitly relate and compare cell motility measurements between these geometries or systems. Here, we provide such analysis on our own data, as well as across data in existing literature to understand whether, and which, metrics are conserved across systems. To our surprise, only one metric of cell movement on 2D surfaces significantly and positively correlates with cell migration in 3D environments (percent migrating cells), and cell invasion in 3D has a weak, negative correlation with glioblastoma invasionin vivo. Finally, to compare across complex model systems,in vivodata, and data from different labs, we suggest that groups report an effect size, a statistical tool that is most translatable across experiments and labs, when conducting experiments that affect cellular motility.more » « less
-
In plants, the robust maintenance of tissue structure is crucial to supporting its functionality. The multi-layered shoot apical meristem (SAM) ofArabidopsis,containing stem cells,is an approximately radially symmetric tissue whose shape and structure is maintained throughout the life of the plant. In this paper, a new biologically calibrated pseudo-three-dimensional (P3D) computational model of a longitudinal section of the SAM is developed. It includes anisotropic expansion and division of cells out of the cross-section plane, as well as representation of tension experienced by the SAM epidermis. Results from the experimentally calibrated P3D model provide new insights into maintenance of the structure of the SAM epidermal cell monolayer under tension and quantify dependence of epidermal and subepidermal cell anisotropy on the amount of tension. Moreover, the model simulations revealed that out-of-plane cell growth is important in offsetting cell crowding and regulating mechanical stresses experienced by tunica cells. Predictive model simulations show that tension-determined cell division plane orientation in the apical corpus may be regulating cell and tissue shape distributions needed for maintaining structure of the wild-type SAM. This suggests that cells' responses to local mechanical cues may serve as a mechanism to regulate cell- and tissue-scale patterning.more » « less
-
Abstract Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology.more » « less
-
Schubert, Michael (Ed.)Electroporation is an increasingly common technique used for exogenous gene expression in live animals, but protocols are largely limited to traditional laboratory organisms. The goal of this protocol is to testin vivoelectroporation techniques in a diverse array of tadpole species. We explore electroporation efficiency in tissue-specific cells of five species from across three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their diverse social behaviors and intriguing physiologies that coordinate chemical defenses, aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we found strong GFP fluorescence within brain and muscle cells that increased with the amount of DNA injected and electrical pulse number. We discuss species-related challenges, troubleshooting, and outline ideas for improvement. Extendingin vivoelectroporation to non-model amphibian species could provide new opportunities for exploring topics in genetics, behavior, and organismal biology.more » « less
An official website of the United States government
