Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.
more »
« less
Ranking migration cue contributions to guiding individual fibroblasts faced with a directional decision in simple microfluidic bifurcations
Abstract Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology.
more »
« less
- Award ID(s):
- 1953890
- PAR ID:
- 10316403
- Date Published:
- Journal Name:
- Integrative Biology
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 1757-9708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cell migration is critical throughout a multicellular organism’s life from embryogenesis to immune response and tissue repair and can even go aberrantly wrong in diseases like metastatic cancer. In vitro, graded concentrations of diffusible chemoattractants can guide migrating cells, but less is known about chemoattractant distribution and chemotaxis within living organisms, which have complex tissue geometries. Using the border cells, which migrate collectively in the Drosophila egg chamber during oogenesis, we studied how tissue structure affects chemotaxis in vivo. Live-imaged border cells exhibited variations in their chemotactic migration, which correlated positionally within distinct tissue architectures, specifically acellular gaps at cell-cell intersections. To determine how different regions in the egg chamber’s geometry affect chemical cues, we developed a partial differential equation (PDE) model of chemoattractant distribution within a relevant in silico domain. Using a hybrid mathematical model that couples the chemoattractant PDE and an agent-based motion of the cluster, we found that larger extracellular volumes within intersections could locally dampen chemoattractant gradient magnitudes and slow cluster speed in simulations. In vivo, in response to genetically increasing the levels of a chemoattractant, PDGF- and VEGF-related factor 1, border cells exhibited delayed migration and behaved differently within specific architectural regions, consistent with results in silico. We next altered the architectural regions in the migration domain in half pint (hfp) mutant egg chambers and observed migration behaviors that still correlated with tissue features. Importantly, the abnormal tissue geometry was sufficient to rescue defects due to high levels of chemoattractant and resulted in punctual border cell migration indicating chemoattractant distribution can depend on tissue structure. Our modeling data indicate that chemoattractants are more concentrated in certain tissue architectures and dispersed in other regions, likely informing cell migration speeds and favoring clustered cell movements in tissue that contain varied architectures in vivo. Our results shed light on the intricate interplay between tissue geometry and the local distribution of important signaling molecules in orchestrating the essential process of cell migration.more » « less
-
Moving cells can sense and respond to physical features of the microenvironment; however, in vivo, the significance of tissue topography is mostly unknown. Here, we usedDrosophilaborder cells, an established model for in vivo cell migration, to study how chemical and physical information influences path selection. Although chemical cues were thought to be sufficient, live imaging, genetics, modeling, and simulations show that microtopography is also important. Chemoattractants promote predominantly posterior movement, whereas tissue architecture presents orthogonal information, a path of least resistance concentrated near the center of the egg chamber. E-cadherin supplies a permissive haptotactic cue. Our results provide insight into how cells integrate and prioritize topographical, adhesive, and chemoattractant cues to choose one path among many.more » « less
-
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.more » « less
-
Abstract Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well‐established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor‐clutch model is developed to demonstrate that the strain‐introduced traction force determines integrin fibronectin pairs' catch‐release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.more » « less
An official website of the United States government

