skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change
While tree rings have enabled interannual examination of the influence of climate on trees, this is not possible for most shrubs. Here, we leverage a multidecadal record of annual foliar carbon isotope ratio collections coupled with 39 y of survey data from two populations of the drought-deciduous desert shrub Encelia farinosa to provide insight into water-use dynamics and climate. This carbon isotope record provides a unique opportunity to examine the response of desert shrubs to increasing temperature and water stress in a region where climate is changing rapidly. Population mean carbon isotope ratios fluctuated predictably in response to interannual variations in temperature, vapor pressure deficit, and precipitation, and responses were similar among individuals. We leveraged the well-established relationships between leaf carbon isotope ratios and the ratio of intracellular to ambient CO 2 concentrations to calculate intrinsic water-use efficiency (iWUE) of the plants and to quantify plant responses to long-term environmental change. The population mean iWUE value increased by 53 to 58% over the study period, much more than the 20 to 30% increase that has been measured in forests [J. Peñuelas, J. G. Canadell, R. Ogaya, Glob. Ecol. Biogeogr. 20, 597–608 (2011)]. Changes were associated with both increased CO 2 concentration and increased water stress. Individuals whose lifetimes spanned the entire study period exhibited increases in iWUE that were very similar to the population mean, suggesting that there was significant plasticity within individuals rather than selection at the population scale.  more » « less
Award ID(s):
1950025
PAR ID:
10202686
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
31
ISSN:
0027-8424
Page Range / eLocation ID:
18161 to 18168
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Both theory and observations suggest that tree intrinsic water use efficiency (iWUE)—the ratio of photosynthetic carbon assimilation to stomatal conductance to water—increases with atmospheric CO2. However, the strength of this relationship varies across sites and species, prompting questions about additional physiological constraints and environmental controls on iWUE. In this study, we analyzed tree core carbon isotope ratios to examine trends in, and drivers of, iWUE in 12 tree species common to the temperate forests of eastern North America, where forests have experienced changes in CO2, climate, and atmospheric pollution in recent decades. Across all site-species combinations, we found that tree iWUE increased 22.3% between 1950 and 2011, coinciding with a 25.2% increase in atmospheric CO2. iWUE trajectories varied markedly among tree functional groups and within species across sites. Needleleaf evergreen iWUE increased until circa 2002 before declining in recent years, while iWUE of broadleaf deciduous species continued to increase. The analysis of environmental controls on iWUE trends revealed smaller increases in iWUE in trees subjected to higher atmospheric pollution loads. Our results suggest that tree functional characteristics and atmospheric pollution history influence tree response to atmospheric CO2, with implications for forest carbon and water balance in temperate regions. 
    more » « less
  2. Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO 2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal “megadrought” in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa , a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO 2 ]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification. 
    more » « less
  3. ABSTRACT Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we simulated the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) in a temperature- and light-controlled chamber, to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the adult survivorship of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species. 
    more » « less
  4. Cernusak, Lucas (Ed.)
    Abstract Recent climate extremes in Mongolia have ignited a renewed interest in understanding past climate variability over centennial and longer time scales across north-central Asia. Tree-ring width records have been extensively studied in Mongolia as proxies for climate reconstruction, however, the climate and environmental signals of tree-ring stable isotopes from this region need to be further explored. Here, we evaluated a 182-year record of tree-ring δ13C and δ18O from Siberian Pine (Pinus sibirica Du Tour) from a xeric site in central Mongolia (Khorgo Lava) to elucidate the environmental factors modulating these parameters. First, we analyzed the climate sensitivity of tree-ring δ13C and δ18O at Khorgo Lava for comparison with ring-width records, which have been instrumental in reconstructing hydroclimate in central Mongolia over two millennia. We also compared stable isotope records of trees with partial cambial dieback (‘strip-bark morphology’), a feature of long-lived conifers growing on resource-limited sites, and trees with a full cambium (‘whole-bark morphology’), to assess the inferred leaf-level physiological behavior of these trees. We found that interannual variability in tree-ring δ13C and δ18O reflected summer hydroclimatic variability, and captured recent, extreme drought conditions, thereby complementing ring-width records. The tree-ring δ18O records also had a spring temperature signal and thus expanded the window of climate information recorded by these trees. Over longer time scales, strip-bark trees had an increasing trend in ring-widths, δ13C (and intrinsic water-use efficiency, iWUE) and δ18O, relative to whole-bark trees. Our results suggest that increases in iWUE at this site might be related to a combination of leaf-level physiological responses to increasing atmospheric CO2, recent drought, and stem morphological changes. Our study underscores the potential of stable isotopes for broadening our understanding of past climate in north-central Asia. However, further studies are needed to understand how stem morphological changes might impact stable isotopic trends. 
    more » « less
  5. Abstract The US Southwest has been entrenched in a two‐decade‐long megadrought (MD), the most severe since 800 CE, which threatens the long‐term vitality and persistence of regional montane forests. Here, we report that in the face of record low winter precipitation and increasing atmospheric aridity, seasonal activity of the North American Monsoon (NAM) climate system brings sufficient precipitation during the height of the summer to alleviate extreme tree water stress. We studied seasonally resolved, tree‐ring stable carbon isotope ratios across a 57‐year time series (1960–2017) in 17 Ponderosa pine forests distributed across the NAM geographic domain. Our study focused on the isotope dynamics of latewood (LW), which is produced in association with NAM rains. During the MD, populations growing within the core region of the NAM operated at lower intrinsic and higher evaporative water‐use efficiencies (WUEiand WUEE, respectively), compared to populations growing in the periphery of the NAM domain, indicating less physiological water stress in those populations with access to NAM moisture. The disparities in water‐use efficiencies in periphery populations are due to a higher atmospheric vapor pressure deficit (VPD) and reduced access to summer soil moisture. The buffering advantage of the NAM, however, is weakening. We observed that since the MD, the relationship between WUEiand WUEEin forests within the core NAM domain is shifting toward a drought response similar to forests on the periphery of the NAM. After correcting for past increases in the atmospheric CO2concentration, we were able to isolate the LW time‐series responses to climate alone. This showed that the shift in the relation between WUEiand WUEEwas driven by the extreme increases in MD‐associated VPD, with little advantageous influence on stomatal conductance from increases in atmospheric CO2concentration. 
    more » « less