skip to main content

Title: Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO 2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal “megadrought” in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa , a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO 2 ]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the more » Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less
  2. Abstract

    Reduced stomatal conductance is a common plant response to rising atmospheric CO2and increases water use efficiency (W). At the leaf-scale,Wdepends on water and nitrogen availability in addition to atmospheric CO2. In hydroclimate modelsWis a key driver of rainfall, droughts, and streamflow extremes. We used global climate data to derive Aridity Indices (AI) for forests over the period 1965–2015 and synthesised those with data for nitrogen deposition andWderived from stable isotopes in tree rings. AI and atmospheric CO2account for most of the variance inWof trees across the globe, while cumulative nitrogen deposition has a significant effect only in regions without strong legacies of atmospheric pollution. The relation of aridity andWdisplays a clear discontinuity.Wand AI are strongly related below a threshold value of AI ≈ 1 but are not related where AI > 1. Tree ring data emphasise that effective demarcation of water-limited from non-water-limited behaviour of stomata is critical to improving hydrological models that operate at regional to global scales.

  3. Abstract

    Instrumental records indicate a century-long trend towards drying over western North America and wetting over eastern North America. A continuation of these trends into the future would have significant hydroclimatic and socioeconomic consequences in both the semi-arid Southwest and humid East. Using tree-ring reconstructions and hydrologic simulations of summer soil moisture, we evaluate and contextualize the modern summer aridity gradient within its natural range of variability established over the past 600 years and evaluate the effects of observed and anthropogenic precipitation, temperature, and humidity trends. The 2001–2020 positive (wet east-dry west) aridity gradient was larger than any 20 year period since 1400 CE, preceded by the most negative (wet west-dry east) aridity gradient during 1976–1995, leading to a strong multi-decade reversal in aridity gradient anomalies that was rivaled only by a similar event in the late-16th century. The 2001–2020 aridity gradient was dominated by long-term summer precipitation increases in the Midwest and Northeast, with smaller contributions from more warming in the West than the East and spring precipitation decreases in the Southwest. Multi-model mean climate simulations from Coupled Model Intercomparison Project 6 experiments suggest anthropogenic climate trends should not have strongly affected the aridity gradient thus far. However, theremore »is high uncertainty due to inter-model disagreement on anthropogenic precipitation trends. The recent strengthening of the observed aridity gradient, its increasing dependence on precipitation variability, and disagreement in modeled anthropogenic precipitation trends reveal significant uncertainties in how water resource availability will change across North America in the coming decades.

    « less
  4. While tree rings have enabled interannual examination of the influence of climate on trees, this is not possible for most shrubs. Here, we leverage a multidecadal record of annual foliar carbon isotope ratio collections coupled with 39 y of survey data from two populations of the drought-deciduous desert shrub Encelia farinosa to provide insight into water-use dynamics and climate. This carbon isotope record provides a unique opportunity to examine the response of desert shrubs to increasing temperature and water stress in a region where climate is changing rapidly. Population mean carbon isotope ratios fluctuated predictably in response to interannual variations in temperature, vapor pressure deficit, and precipitation, and responses were similar among individuals. We leveraged the well-established relationships between leaf carbon isotope ratios and the ratio of intracellular to ambient CO 2 concentrations to calculate intrinsic water-use efficiency (iWUE) of the plants and to quantify plant responses to long-term environmental change. The population mean iWUE value increased by 53 to 58% over the study period, much more than the 20 to 30% increase that has been measured in forests [J. Peñuelas, J. G. Canadell, R. Ogaya, Glob. Ecol. Biogeogr. 20, 597–608 (2011)]. Changes were associated with both increased CO 2more »concentration and increased water stress. Individuals whose lifetimes spanned the entire study period exhibited increases in iWUE that were very similar to the population mean, suggesting that there was significant plasticity within individuals rather than selection at the population scale.« less
  5. Abstract

    Changes in vegetation distribution are underway in Arctic and boreal regions due to climate warming and associated fire disturbance. These changes have wide ranging downstream impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus critical to understand where these changes are occurring and what types of vegetation are affected, and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs, graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020. We employed a multi-scale approach, scaling from field harvest data and unmanned aerial vehicle-based biomass predictions to produce wall-to-wall maps based on climatological, topographic, phenological and Landsat spectral predictors. We found deciduous shrub and graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen (13%) biomass over a study area of approximately 500 000 km2. Fire was an important driver of recent changes in the study area, with the largest changes in biomass associated with historic fire perimeters. Decreases in lichen and graminoid biomass often corresponded withmore »increasing shrub biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal region. Understanding these changes and the impacts they in turn will have on Arctic and boreal ecosystems will be critical to understanding the trajectory of climate change in the region.

    « less