Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is notmore »
Crystal structures of (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide
The title complexes, (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 5 H 8 N 2 ) 2 (C 8 H 12 )]I, ( 1 ) and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 7 H 12 N 2 ) 2 (C 8 H 12 )]I, ( 2 ), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe) 2 ]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C 2/ m , while 2 crystallizes in the orthorhombic space group Pccn , both with Z = 4.
- Award ID(s):
- 1726077
- Publication Date:
- NSF-PAR ID:
- 10202712
- Journal Name:
- Acta Crystallographica Section E Crystallographic Communications
- Volume:
- 76
- Issue:
- 5
- Page Range or eLocation-ID:
- 611 to 614
- ISSN:
- 2056-9890
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 ,more »
-
A series of five coordinated iron bis(dithiolene) complexes [Fe(NHC)(S 2 C 2 R 2 ) 2 ] (R = C 6 H 5 or C 6 H 4 - p -OCH 3 ) containing N-heterocyclic carbene (NHC) (NHC = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene or 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) were isolated in high yield (84–92%). The iron complexes were characterized by NMR spectroscopy and confirmed by single crystal X-ray diffraction studies. The combination of cyclic voltammetry and spectroelectrochemical analysis revealed that iron complexes undergo Fe–C NHC bond cleavage and release NHC upon subjection to electrochemical reduction. The electrochemically released NHC was trapped using 1-naphthylisothiocyanate and the adduct was isolated in nearly quantitative yield (∼99%). As a proof of concept, the electrochemically released NHC was subsequently used as a catalyst for synthesis of γ-butyrolactones from commercially available cinnamaldehydes.
-
1,3-Bis(6-bromohexyloxy)benzene, 2,7-bis(6-bromohexyloxy)naphthalene, 1,3-bis(4-bromomethylbenzyloxy)benzene, and 1,3-bis(3-bromomethylbenzyloxy)benzene were prepared via Williamson ether synthesis using resorcinol or 2,7-dihydroxynaphthalene and 1,6-dibromohexane, 1,4-bis(bromomethyl)benzene, or 1,3-bis(bromomethyl)benzene (21–47 % yield). These dibromides were condensed with 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline in the presence of K2CO3 to give the corresponding 31- to 35-membered macrocycles (3a–d, 22–63 % yield). When 3a–d were treated with CuI, mononuclear 1 : 1 complexes formed, in which the CuI chelates to the nitrogen donor atoms of the phenanthroline moiety (4a–d, 40–80 % yield). The crystal structures of 3a–c and 4a–c were determined and analyzed using density functional theory calculations and in the context of rotaxanes that could be formed by treatment of 4a–d with terminal alkynes (e.g. macrocycle dimensions, void volumes). The copper and iodide atoms in 4a–c significantly protrude from the least-squares plane of the phenanthroline moiety (0.46–0.63 Å and 1.65–2.07 Å).
-
N , N ′-Di- tert -butylcarbodiimide, Me 3 CN=C=NCMe 3 , undergoes reductive cleavage in the presence of the Gd II complex, [K(18-crown-6) 2 ][Gd II (N R 2 ) 3 ] ( R = SiMe 3 ), to form a new type of ligand, the tert -butylcyanamide anion, (Me 3 CNCN) − . This new ligand can bind metals with one or two donor atoms as demonstrated by the isolation of a single crystal containing potassium salts of both end-on and side-on bound tert -butylcyanamide anions, (Me 3 CNCN) − . The crystal contains [K(18-crown-6)(H 2 O)][NCNCMe 3 - kN ], in which one ( t BuNCN) − anion is coordinated end-on to potassium ligated by 18-crown-6 and water, as well as [K(18-crown-6)][η 2 -NCNCMe 3 ], in which an 18-crown-6 potassium is coordinated side-on to the terminal N—C linkage. This single crystal also contains one equivalent of 1,3-di- tert -butyl urea, (C 9 H 20 N 2 O), which is involved in hydrogen bonding that may stabilize the whole assembly, namely, aqua( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)–( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)– N , N ′-di- tert -butylcarbodiimide (1/1/1) [K(C 5 H 9 N 2 )(C 12 H 24 O 6 )]·[K(C 5 Hmore »