skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A modified limited memory steepest descent method motivated by an inexact super-linear convergence rate analysis
Abstract How to choose the step size of gradient descent method has been a popular subject of research. In this paper we propose a modified limited memory steepest descent method (MLMSD). In each iteration we propose a selection rule to pick a unique step size from a candidate set, which is calculated by Fletcher’s limited memory steepest descent method (LMSD), instead of going through all the step sizes in a sweep, as in Fletcher’s original LMSD algorithm. MLMSD is motivated by an inexact super-linear convergence rate analysis. The R-linear convergence of MLMSD is proved for a strictly convex quadratic minimization problem. Numerical tests are presented to show that our algorithm is efficient and robust.  more » « less
Award ID(s):
1740833
PAR ID:
10203325
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion. 
    more » « less
  2. ourier ptychographic microscopy enables gigapixel-scale imaging, with both large field-of-view and high resolution. Using a set of low-resolution images that are recorded under varying illumination angles, the goal is to computationally reconstruct high-resolution phase and amplitude images. To increase temporal resolution, one may use multiplexed measurements where the sample is illuminated simultaneously from a subset of the angles. In this paper, we develop an algorithm for Fourier ptychographic microscopy with such multiplexed illumination. Specifically, we consider gradient descent type updates and propose an analytical step size that ensures the convergence of the iterates to a stationary point. Furthermore, we propose an accelerated version of our algorithm (with the same step size) which significantly improves the convergence speed. We demonstrate that the practical performance of our algorithm is identical to the case where the step size is manually tuned. Finally, we apply our parameter-free approach to real data and validate its applicability. 
    more » « less
  3. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme. 
    more » « less
  4. Classical Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE-based model architectures have become popular as a means to reduce training and inference costs. There, the partitioning function and the experts are both learnt jointly via gradient descent-type methods on the log-likelihood. In this paper we study theoretical guarantees of the Expectation Maximization (EM) algorithm for the training of MoE models. We first rigorously analyze EM for MoE where the conditional distribution of the target and latent variable conditioned on the feature variable belongs to an exponential family of distributions and show its equivalence to projected Mirror Descent with unit step size and a Kullback-Leibler Divergence regularizer. This perspective allows us to derive new convergence results and identify conditions for local linear convergence; In the special case of mixture of 2 linear or logistic experts, we additionally provide guarantees for linear convergence based on the signal-to-noise ratio. Experiments on synthetic and (small-scale) real-world data supports that EM outperforms the gradient descent algorithm both in terms of convergence rate and the achieved accuracy. 
    more » « less
  5. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling. 
    more » « less