Aims.We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe. Methods.We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [O III]λ5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae. Results.We identify 107 PNe and derive a most-likely distance modulus $$ (m-M)_0 = 26.48^{+0.11}_{-0.26} $$ ($$ d = 1.98^{+0.10}_{-0.23} $$ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5 M⊙but do not populate the PNLF cutoff. Conclusions.The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300.
more »
« less
Carbon Isotope Ratios in Planetary Nebulae: The Unexpected Enhancement of 13C
The 12C/13C ratio has been measured toward a sample of planetary nebulae (PNe) using millimeter observations of CO, HCN, HNC, CN, and other species, conducted with the 12 m antenna and the Submillimeter Telescope of the Arizona Radio Observatory. The observed nebulae spanned the entire lifetime of PNe, from ∼900 to 12,000 yr, and include well-known objects such as NGC 7293 (Helix), NGC 6720 (Ring), and NGC 2440, as well as relatively unexplored nebulae (M3–28, M2–48, and M3–55). In most cases, multiple molecules and transitions were used in the ratio determination, resulting in the most accurate values available to date, with 10%–40% uncertainties. The ratios found were unexpectedly low, lying in the range 12C/13C ∼1.0 ± 0.7–13.2 ± 4.9, with an average value of 3.7—drastically less than found in the envelopes of C-rich AGB stars, and, in some cases, lower than the minimum value achieved in equilibrium CNO burning. Such low values are expected for the two O-rich nebulae studied (M2–9 and M2–48), because of insufficient third dredge-up events. However, most of the PNe observed were clearly carbon-rich, as deduced from the large number of C-bearing molecules present in them. Because nucleosynthesis ceases in the PN stage, both the C/O and the 12C/13C ratios must reflect abundances at the end of the AGB. These consistently low 12C/13C ratios, combined with the bipolar/multipolar morphologies of all planetary nebulae observed, suggest an explosive process involving proton-capture occurred at the AGB–PN transition.
more »
« less
- Award ID(s):
- 1907910
- PAR ID:
- 10203352
- Date Published:
- Journal Name:
- The astrophysical journal
- Volume:
- 900
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We examine the relationship between circumnebular extinction and core mass for sets of [O III]-bright planetary nebulae (PNe) in the Large Magellanic Cloud and M31. We confirm that for PNe within 1 magnitude of the planetary nebula luminosity function’s (PNLF’s) bright-end cutoff magnitude (M*), higher core-mass PNe are disproportionally affected by greater circumnebular extinction. We show that this result can explain why the PNLF cutoff is so insensitive to population age. In younger populations, the higher-mass, higher-luminosity cores experience greater circumnebular extinction from the dust created by their asymptotic giant branch (AGB) progenitors compared to the lower-mass cores. We further show that when our core-mass–nebular extinction law is combined with post-AGB stellar evolutionary models, the result is a large range of population ages where the brightest PNe all have nearly identical [O III] luminosities. Finally, we note that while there is some uncertainty about whether the oldest stellar populations can produce PNe as bright as M*, this issue is resolved if the initial–final mass relation (IFMR) for the lowest-mass stars results in slightly more massive cores, as observed in some clusters. Alternatively, introducing a small amount of intrinsic scatter (0.022 Msun) into the IFMR also addresses this uncertainty.more » « less
-
Abstract Observations of HCN and HCO + have been carried out toward 13 planetary nebulae (PNe) using the facilities of the Arizona Radio Observatory (ARO). These nebulae represent a wide range of morphologies and ages (∼2000–28,000 yr). For both molecules, the J = 1 → 0 transitions at 88–89 GHz and the J = 3 → 2 lines at 265–267 GHz were measured, together with CO lines ( J = 1 → 0, 2 → 1, and 3 → 2, depending on the source), using the ARO 12 m and Submillimeter Telescopes. HCN and HCO + were detected with at least one transition in 10 nebulae: He 2-459, Hu 1-1, K3-52, K3-65, M1-8, M1-40, M1-59, M2-53, M4-17, and NGC 6445. HCO + was additionally identified via two transitions in Na 2. Some observed line profiles were complex, with multiple velocity components tracing varied outflows. From radiative transfer modeling, column densities were established for HCN and HCO + : N tot (HCN) = 0.005–1.1 × 10 14 and N tot (HCO + ) = 0.008–9.5 × 10 13 cm −2 . Gas densities of n (H 2 ) ∼ 10 5 –10 7 cm −3 were also determined for all PNe. Fractional abundances with respect to H 2 , calculated using CO as a proxy, are f (HCN) ∼ 0.2–1.5 × 10 −7 and f (HCO + ) ∼ 0.3–5.1 × 10 −8 . The abundances of HCN and HCO + did not significantly vary with nebular age to 28,000 yr. Combined with previous observations, at least 30 PNe contain HCN and/or HCO + , indicating that polyatomic molecules are common constituents of these objects. The data strongly support a scenario where dense ejecta from PNe seed the interstellar medium with molecular material.more » « less
-
Abstract NGC 6302 (The Butterfly Nebula) is an extremely energetic and rapidly expanding bipolar planetary nebula (PN). If the central source is a single star, then its apparent location in an H-R diagram places it among the most massive, hottest, and presumably rapidly evolving of all central stars of PNe. Our proper motion study of NGC 6302, based on Hubble Space Telescope WFC3 images spanning 11 yr, has uncovered at least four different pairs of uniformly expanding internal lobes ejected at various times and orientations over the past two millennia at speeds ranging from 10–600 km s−1. In addition, we find a pair of collimated off-axis flows in constant motion at ∼770 ± 100 km s−1within which bright [Feii]feathersare conspicuous. Combining our results with those previously published, we find that the ensemble of flows has an ionized mass >0.1M⊙and its kinetic energy, between 1046and 1048erg, lies at the upper end of gravity-powered PNe ejection processes such as stellar mergers or mass accretion. We assemble our results into a plausible historical timeline of ejections from the nucleus and suggest that the ejections are powered by gravitational infall.more » « less
-
Abstract We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bilobed, pinched-waist PNe that are rich in dust and molecular gas. The new WFC3 emission-line image suite clearly defines the dusty toroidal equatorial structure that bisects NGC 6302's polar lobes, and the fine structures (clumps, knots, and filaments) within the lobes. The most striking aspect of the new WFC3 image suite is the bright, S-shaped 1.64 μ m [Fe ii ] emission that traces the southern interior of the east lobe rim and the northern interior of the west lobe rim, in point-symmetric fashion. We interpret this [Fe ii ] emitting region as a zone of shocks caused by ongoing, fast (∼100 km s −1 ), collimated, off-axis winds from NGC 6302's central star(s). The [Fe ii ] emission and a zone of dusty, N- and S-rich clumps near the nebular symmetry axis form wedge-shaped structures on opposite sides of the core, with boundaries marked by sharp azimuthal ionization gradients. Comparison of our new images with earlier HST/WFC3 imaging reveals that the object previously identified as NGC 6302's central star is a foreground field star. Shell-like inner lobe features may instead pinpoint the obscured central star’s actual position within the nebula’s dusty central torus. The juxtaposition of structures revealed in this HST/WFC3 imaging study of NGC 6302 presents a daunting challenge for models of the origin and evolution of bipolar PNe.more » « less
An official website of the United States government

