- Award ID(s):
- 1636626
- Publication Date:
- NSF-PAR ID:
- 10203409
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 495
- Issue:
- 1
- Page Range or eLocation-ID:
- 1073 to 1092
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT V3890 Sgr is a recurrent nova that has been seen in outburst three times so far, with the most recent eruption occurring on 2019 August 27 ut. This latest outburst was followed in detail by the Neil Gehrels Swift Observatory, from less than a day after the eruption until the nova entered the Sun observing constraint, with a small number of additional observations after the constraint ended. The X-ray light curve shows initial hard shock emission, followed by an early start of the supersoft source phase around day 8.5, with the soft emission ceasing by day 26. Together with the peak blackbody temperature of the supersoft spectrum being ∼100 eV, these timings suggest the white dwarf mass to be high, $\sim 1.3\, {\rm M_{\odot }}$. The UV photometric light curve decays monotonically, with the decay rate changing a number of times, approximately simultaneously with variations in the X-ray emission. The UV grism spectra show both line and continuum emission, with emission lines of N, C, Mg, and O being notable. These UV spectra are best dereddened using a Small Magellanic Cloud extinction law. Optical spectra from SMARTS show evidence of interaction between the nova ejecta and wind from the donormore »
-
Abstract We present photometric and spectroscopic observations of the nearby (
D ≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hα emission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with an ∼ 0.2M ☉yr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii , Fei , and Feii lines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity,more » -
ABSTRACT M31-LRN-2015 is a likely stellar merger discovered in the Andromeda Galaxy in 2015. We present new optical to mid-infrared photometry and optical spectroscopy for this event. Archival data show that the source started to brighten ∼2 yr before the nova event. During this precursor phase, the source brightened by ∼3 mag. The light curve at 6 and 1.5 months before the main outburst may show periodicity, with periods of 16 ± 0.3 and 28.1 ± 1.4 d, respectively. This complex emission may be explained by runaway mass-loss from the system after the binary undergoes Roche lobe overflow, leading the system to coalesce in tens of orbital periods. While the progenitor spectral energy distribution shows no evidence of pre-existing warm dust in the system, the remnant forms an optically thick dust shell at approximately four months after the outburst peak. The optical depth of the shell increases dramatically after 1.5 yr, suggesting the existence of shocks that enhance the dust formation process. We propose that the merger remnant is likely an inflated giant obscured by a cooling shell of gas with mass ∼0.2 M⊙ ejected at the onset of the common envelope phase.
-
ABSTRACT X-ray observations of shocked gas in novae can provide a useful probe of the dynamics of the ejecta. Here we report on X-ray observations of the nova V959 Mon, which was also detected in GeV gamma-rays with the Fermi satellite. We find that the X-ray spectra are consistent with a two-temperature plasma model with non-solar abundances. We interpret the X-rays as due to shock interaction between the slow equatorial torus and the fast polar outflow that were inferred from radio observations of V959 Mon. We further propose that the hotter component, responsible for most of the flux, is from the reverse shock driven into the fast outflow. We find a systematic drop in the column density of the absorber between days 60 and 140, consistent with the expectations for such a picture. We present intriguing evidence for a delay of around 40 d in the expulsion of the ejecta from the central binary. Moreover, we infer a relatively small (a few times 10−6 M⊙) ejecta mass ahead of the shock, considerably lower than the mass of 104 K gas inferred from radio observations. Finally, we infer that the dominant X-ray shock was likely not radiative at the time of our observations, andmore »
-
We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise, lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at ∼7 × 10 40 erg s −1 , while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type IIn supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37 d after maximum shows a forest of narrowmore »