Local business leaders, policy makers, elected officials, city planners, emergency managers, and private citizens are responsible for, and deeply affected by, the performance of critical supply chains and related infrastructures. At the center of critical supply chains is the food-energy-water nexus (FEW); a nexus that is key to a community’s wellbeing, resilience, and sustainability. In the 21st century, managing a local FEW nexus requires accurate data describing the function and structure of a community’s supply chains. However, data is not enough; we need data-informed conversation and technical and social capacity building among local stakeholders to utilize the data effectively. There are some resources available at the mesoscale and for food, energy, or water, but many communities lack the data and tools needed to understand connections and bridge the gaps between these scales and systems. As a result, we currently lack the capacity to manage these systems in small and medium sized communities where the vast majority of people, decisions, and problems reside. This study develops and validates a participatory citizen science process for FEW nexus capacity building and data-driven problem solving in small communities at the grassroots level. The FEWSION for Community Resilience (F4R) process applies a Public Participation inmore »
In defense of decentralized research data management
Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated RDM solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or lab, a research institute, a domain data archive or cloud computing platform, and a collaborative multi-site consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution, and present a working system as an exemplary implementation.
- Publication Date:
- NSF-PAR ID:
- 10203736
- Journal Name:
- Neuroforum
- Volume:
- 27
- Issue:
- 1
- ISSN:
- 2363-7013
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Purpose This study aims to present theory, practice and original research findings to support the proposition that broad enquiry and problem-based learning (EPBL) approaches provide an appropriate pedagogical lens for sustainability educators to develop the knowledge and skills needed to work effectively within mission-oriented innovation policy (MIP) environments. Design/methodology/approach The research study comprised four elements, each of which used different research methods. The first element involved a literature review mapping the synergies between MIP and EPBL; the second element piloted the use of EPBL for undergraduate modules related to sustainability challenges; the third element involved external stakeholders in the co-creation of a postgraduate programme that brought together innovation and sustainability, with EPBL fundamental to the design and development; the fourth element curated and comparatively analysed international cases of EPBL in the context of MIP, and sustainability challenges in particular, highlighting the versatility of EPBL and the importance of creativity in EPBL design and implementation. Findings The systematic literature review reveals synergies between the key features of EPBL and defining characteristics of MIP, indicating the relevance of applying EPBL to support MIP. Two in situ pilots generated 13 recommendations on the benefits and operational challenges of applying EPBL. These recommendations informedmore »
-
Modeling is essential to characterize and explore complex societal and environmental issues in systematic and collaborative ways. Socio-environmental systems (SES) modeling integrates knowledge and perspectives into conceptual and computational tools that explicitly recognize how human decisions affect the environment. Depending on the modeling purpose, many SES modelers also realize that involvement of stakeholders and experts is fundamental to support social learning and decision-making processes for achieving improved environmental and social outcomes. The contribution of this paper lies in identifying and formulating grand challenges that need to be overcome to accelerate the development and adaptation of SES modeling. Eight challenges are delineated: bridging epistemologies across disciplines; multi-dimensional uncertainty assessment and management; scales and scaling issues; combining qualitative and quantitative methods and data; furthering the adoption and impacts of SES modeling on policy; capturing structural changes; representing human dimensions in SES; and leveraging new data types and sources. These challenges limit our ability to effectively use SES modeling to provide the knowledge and information essential for supporting decision making. Whereas some of these challenges are not unique to SES modeling and may be pervasive in other scientific fields, they still act as barriers as well as research opportunities for the SES modelingmore »
-
Recommender-as-a-Service with Chatbot Guided Domain-science Knowledge Discovery in a Science GatewayScientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration of recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons).
-
The project mission was to organize a workshop aimed to explore how the US data science community can cooperate with and benefit from collaborations with partners in Serbia and the West Balkan region. The scope included fundamental data science methods and high-impact applications related to big data processing, security and privacy in critical infrastructures, biomedical informatics, and computational archeology. The proposed workshop facilitated closing the gap between data science research in the US and Serbia and the region and brought together data scientists with researchers from disciplines that until recently had little exposure to data science methods, potentially enabling collaborative breakthroughs in those scientific fields. A large fraction of participants from both sides were early career researchers including advanced level graduate students, postdoctoral research associates, and assistant/associate professors within 10 years of obtaining their Ph.D. The participants included a large fraction of female and minority scientists. The workshop objective was achieved by including the following inter-related objectives: (1) Establishing new multidisciplinary international collaborations between data science, mathematics, and sciences that generate big data and require advanced methods; (2) Reinforcing collaboration mechanisms between the NSF and Serbia’s Ministry of Education, Science and Technological Development and organize joint research projects; and (3)more »