Abstract. Deep convective updraft invigoration via indirect effects of increased aerosol number concentration on cloud microphysics is frequently cited as a driver of correlations between aerosol and deep convection properties. Here, we critically evaluate the theoretical, modeling, and observational evidence for warm- and cold-phase invigoration pathways. Though warm-phase invigoration is plausible and theoretically supported via lowering of the supersaturation with increased cloud droplet concentration in polluted conditions, the significance of this effect depends on substantial supersaturation changes in real-world convective clouds that have not been observed. Much of the theoretical support for cold-phase invigoration depends on unrealistic assumptions of instantaneous freezing and unloading of condensate in growing, isolated updrafts. When applying more realistic assumptions, impacts on buoyancy from enhanced latent heating via fusion in polluted conditions are largely canceled by greater condensate loading. Many foundational observational studies supporting invigoration have several fundamental methodological flaws that render their findings incorrect or highly questionable. Thus, much of the evidence for invigoration has come from numerical modeling, but different models and setups have produced a vast range of results. Furthermore, modeled aerosol impacts on deep convection are rarely tested for robustness, and microphysical biases relative to observations persist, rendering many results unreliable for application to the real world. Without clear theoretical, modeling, or observational support, and given that enervation rather than invigoration may occur for some deep convective regimes and environments, it is entirely possible that the overall impact of cold-phase invigoration is negligible. Substantial mesoscale variability of dominant thermodynamic controls on convective updraft strength coupled with substantial updraft and aerosol variability in any given event are poorly quantified by observations and present further challenges to isolating aerosol effects. Observational isolation and quantification of convective invigoration by aerosols is also complicated by limitations of available cloud condensation nuclei and updraft speed proxies, aerosol correlations with meteorological conditions, and cloud impacts on aerosols. Furthermore, many cloud processes, such as entrainment and condensate fallout, modulate updraft strength and aerosol–cloud interactions, varying with cloud life cycle and organization, but these processes remain poorly characterized. Considering these challenges, recommendations for future observational and modeling research related to aerosol invigoration of deep convection are provided.
more »
« less
Type‐Dependent Impact of Aerosols on Precipitation Associated With Deep Convective Cloud Over East Asia
Abstract Aerosol‐cloud‐precipitation interactions represent one of the most significant uncertainties in climate simulation and projection. In particular, the impact of aerosols on precipitation is highly uncertain due to limited and conflicting observational evidence. A major challenge is to distinguish the effects of different types of aerosols on precipitation associated with deep convective clouds, which produces most of the precipitation in East Asia. Here, we use 9‐yr observations from multiple satellite‐borne sensors and find that the occurrent frequency of heavy rain increases while that of light rain decreases with the increase of aerosol optical depth (AOD) for dust and polluted continental aerosol types. For average hourly precipitation amount, elevated smoke tends to suppress deep convective precipitation, while dust and polluted continental aerosols enhance precipitation mainly through the invigoration of deep convection. The invigoration effect is more significant for clouds with higher cloud base temperature (CBT), while no significant invigoration is observed when CBT is <12°C. A great contrast is found for the response of average hourly precipitation amount to aerosols over ocean and land. While the prevailing continental aerosol types other than smoke increase precipitation, the marine aerosols first enhance and then inhibit precipitation with the increase of AOD. Moreover, our analysis indicates that the above‐mentioned enhancement and inhibition effects on precipitation are mainly caused by aerosols themselves, rather than by the covariation of meteorological factors. These observed relationships between different aerosol types and precipitation frequency and amount provide valuable constraints on the model forecasting of precipitation.
more »
« less
- Award ID(s):
- 2103820
- PAR ID:
- 10374541
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 127
- Issue:
- 2
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Aerosol–cloud interactions remain largely uncertain with respect to predicting theirimpacts on weather and climate. Cloud microphysics parameterization is oneof the factors leading to large uncertainty. Here, we investigate the impactsof anthropogenic aerosols on the convective intensity and precipitation of athunderstorm occurring on 19 June 2013 over Houston with the Chemistryversion of Weather Research and Forecast model (WRF-Chem) using the Morrisontwo-moment bulk scheme and spectral bin microphysics (SBM) scheme. We findthat the SBM predicts a deep convective cloud that shows better agreement withobservations in terms of reflectivity and precipitation compared with theMorrison bulk scheme that has been used in many weather and climate models.With the SBM scheme, we see a significant invigoration effect on convectiveintensity and precipitation by anthropogenic aerosols, mainly throughenhanced condensation latent heating. Such an effect is absent withthe Morrison two-moment bulk microphysics, mainly because the saturationadjustment approach for droplet condensation and evaporation calculationlimits the enhancement by aerosols in (1) condensation latent heat byremoving the dependence of condensation on droplets and aerosols and (2) ice-related processes because the approach leads to stronger warm rain andweaker ice processes than the explicit supersaturation approach.more » « less
-
Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitationnull (Ed.)Abstract. Changes in land cover and aerosols resulting from urbanization may impactconvective clouds and precipitation. Here we investigate how Houstonurbanization can modify sea-breeze-induced convective cloud and precipitation through the urban land effect and anthropogenic aerosol effect. The simulations are carried out with the Chemistry version of the WeatherResearch and Forecasting model (WRF-Chem), which is coupled with spectral-bin microphysics (SBM) and the multilayer urban model with abuilding energy model (BEM-BEP). We find that Houston urbanization (thejoint effect of both urban land and anthropogenic aerosols) notably enhancesstorm intensity (by ∼ 75 % in maximum vertical velocity) andprecipitation intensity (up to 45 %), with the anthropogenic aerosoleffect more significant than the urban land effect. Urban land effectmodifies convective evolution: speed up the transition from the warm cloudto mixed-phase cloud, thus initiating surface rain earlier but slowing down the convective cell dissipation, all of which result from urban heating-induced stronger sea-breeze circulation. The anthropogenic aerosol effectbecomes evident after the cloud evolves into the mixed-phase cloud,accelerating the development of storm from the mixed-phase cloud to deepcloud by ∼ 40 min. Through aerosol–cloud interaction (ACI), aerosols boost convective intensity and precipitation mainly by activatingnumerous ultrafine particles at the mixed-phase and deep cloud stages. Thiswork shows the importance of considering both the urban land and anthropogenic aerosol effects for understanding urbanization effects on convective cloudsand precipitation.more » « less
-
Abstract Aerosols are important environmental factors that can influence deep convective clouds (DCCs) by serving as cloud condensation nuclei. Due to complications in DCC dynamics and microphysics, and aerosol size distribution and composition, understanding aerosol‐DCC interactions has been a daunting challenge. Recently, the convective invigoration mechanisms through enhancing latent heating in condensation and ice‐related processes that have been proposed in literature are debated for their significance qualitatively and quantitatively. A salient issue arising from these debates is the imperative need to clarify essential knowledge and methodologies in investigating aerosol impacts on deep convection. Here we have presented our view of key aspects on investigating and understanding these invigoration mechanisms as well as the aerosol and meteorological conditions under which these mechanisms may be significant based on new findings. For example, the condensational invigoration is most significant under a clean condition with an introduction of a large number of ultrafine particles, and the freezing‐induced invigoration can be significant in a clean condition with a large number of relatively large‐size particles being added. We have made practical recommendations on approaches for investigating aerosol impacts on convection with both modeling and observations. We note that the feedback induced by the invigoration via the enhanced latent heating to circulation and meteorology can be an important part of aerosol impacts but is very complicated and varies with different convective storm types. This is an important future direction for studying aerosol‐DCC interactions.more » « less
-
Abstract The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 μm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects.more » « less
An official website of the United States government
