Motivated by the need for compact descriptions of the evolution of non-classical wakes behind yawed wind turbines, we develop an analytical model to predict the shape of curled wakes. Interest in such modelling arises due to the potential of wake steering as a strategy for mitigating power reduction and unsteady loading of downstream turbines in wind farms. We first estimate the distribution of the shed vorticity at the wake edge due to both yaw offset and rotating blades. By considering the wake edge as an ideally thin vortex sheet, we describe its evolution in time moving with the flow. Vortex sheet equations are solved using a power series expansion method, and an approximate solution for the wake shape is obtained. The vortex sheet time evolution is then mapped into a spatial evolution by using a convection velocity. Apart from the wake shape, the lateral deflection of the wake including ground effects is modelled. Our results show that there exists a universal solution for the shape of curled wakes if suitable dimensionless variables are employed. For the case of turbulent boundary layer inflow, the decay of vortex sheet circulation due to turbulent diffusion is included. Finally, we modify the Gaussian wake model by incorporating the predicted shape and deflection of the curled wake, so that we can calculate the wake profiles behind yawed turbines. Model predictions are validated against large-eddy simulations and laboratory experiments for turbines with various operating conditions.
more »
« less
Generation and decay of counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer
A quantitative understanding of the dominant mechanisms that govern the generation and decay of the counter-rotating vortex pair (CVP) produced by yawed wind turbines is needed to fully realize the potential of yawing for wind farm power maximization and regulation. Observations from large eddy simulations (LES) of yawed wind turbines in the turbulent atmospheric boundary layer and concepts from the aircraft trailing vortex literature inform a model for the shed vorticity and circulation. The model is formed through analytical integration of simplified forms of the vorticity transport equation. Based on an eddy viscosity approach, it uses the boundary-layer friction velocity as the velocity scale and the width of the vorticity distribution itself as the length scale. As with the widely used Jensen model for wake deficit evolution in wind farms, our analytical expressions do not require costly numerical integration of differential equations. The predicted downstream decay of maximum vorticity and total circulation agree well with LES results. We also show that the vorticity length scale grows linearly with downstream distance and find several power laws for the decay of maximum vorticity. These results support the notion that the decay of the CVP is dominated by gradual cancellation of the vorticity at the line of symmetry of the wake through cross-diffusion.
more »
« less
- PAR ID:
- 10204178
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 903
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Analytical wake models provide a computationally efficient means to predict velocity distributions in wind turbine wakes in the atmospheric boundary layer (ABL). Most existing models are developed for neutral atmospheric conditions and correspondingly neglect the effects of buoyancy and Coriolis forces that lead to veer, i.e., changes in the wind direction with height. Both veer and changes in thermal stratification lead to lateral shearing of the wake behind a wind turbine, which affects the power output of downstream turbines. Here we develop an analytical engineering wake model for a wind turbine in yaw in ABL flows including Coriolis and thermal stratification effects. The model combines the new analytical representation of ABL vertical structure based on coupling Ekman and surface layer descriptions developed in Narasimhan et al. [Boundary Layer Meteorol. 190, 16 (2024)] with the vortex sheet-based wake model for yawed turbines proposed in Bastankhah et al. [J. Fluid Mech. 933, A2 (2022)], as well as a new method to predict the wake expansion rate based on the Townsend-Perry logarithmic scaling of streamwise velocity variance. The proposed wake model's predictions show good agreement with large-eddy simulation results, capturing the effects of wind veer and yawing, including the curled and sheared wake structures across various states of the ABL, ranging from neutrally to strongly stably stratified atmospheric conditions. The model significantly improves power loss predictions from wake interactions, especially in strongly stably stratified conditions where wind veer effects dominate.more » « less
-
Yawing wind turbines has emerged as an appealing method for wake deflection. However, the associated flow properties, including the magnitude of the transverse velocity associated with yawed turbines, are not fully understood. In this paper, we view a yawed turbine as a lifting surface with an elliptic distribution of transverse lift. Prandtl’s lifting line theory provides predictions for the transverse velocity and magnitude of the shed counter-rotating vortex pair known to form downstream of the yawed turbine. The streamwise velocity deficit behind the turbine can then be obtained using classical momentum theory. This new model for the near-disk inviscid region of the flow is compared to numerical simulations and found to yield more accurate predictions of the initial transverse velocity and wake skewness angle than existing models. We use these predictions as initial conditions in a wake model of the downstream evolution of the turbulent wake flow and compare predicted wake deflection with measurements from wind tunnel experiments.more » « less
-
Collective wind farm flow control, where wind turbines are operated in an individually suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce wake interactions and increase farm energy production. However, existing wake models used for flow control often estimate the thrust and power of yaw-misaligned turbines using simplified empirical expressions that require expensive calibration data and do not extrapolate accurately between turbine models. The thrust, wake velocity deficit, wake deflection and power of a yawed wind turbine depend on its induced velocity. Here, we extend classical one-dimensional momentum theory to model the induction of a yaw-misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake velocities and power are developed as a function of the yaw angle ( $$\gamma$$ ) and thrust coefficient. The analytical model is validated against large eddy simulations of a yawed actuator disk. Because the induction depends on the yaw and thrust coefficient, the power generated by a yawed actuator disk will always be greater than a $$\cos ^3(\gamma )$$ model suggests. The power lost due to yaw misalignment depends on the thrust coefficient. An analytical expression for the thrust coefficient that maximizes power, depending on the yaw, is developed and validated. Finally, using the developed induction model as an initial condition for a turbulent far-wake model, we demonstrate how combining wake steering and thrust (induction) control can increase array power, compared to either independent steering or induction control, due to the joint dependence of the induction on the thrust coefficient and yaw angle.more » « less
-
Langmuir turbulence consists of Langmuir circulation (LC) generated at the surface of rivers, lakes, bays, and oceans by the interaction between the wind-driven shear and surface gravity waves. In homogeneous shallow water, LC can extend to the bottom of the water column and interact with the bottom boundary layer. Large-eddy simulation (LES) of LC in shallow water was performed with the finite volume method and various forms of subgrid-scale (SGS) model characterized by different near-wall treatments of the SGS eddy viscosity. The wave forcing relative to wind forcing in the LES was set following the field measurements of full-depth LC during the presence of LC engulfing a water column 15 m in depth in the coastal ocean, reported in the literature. It is found that the SGS model can greatly impact the structure of LC in the lower half of the water column. Results are evaluated in terms of (1) the Langmuir turbulence velocity statistics and (2) the lateral (crosswind) length scale and overall cell structure of LC. LES with an eddy viscosity with velocity scale in terms of S and Ω (where S is the norm of the strain rate tensor and Ω is the norm of the vorticity tensor) and a Van Driest wall damping function (referred to as the S-Omega model) is found to provide best agreement with pseudo-spectral LES in terms of the lateral length scale and overall cell structure of LC. Two other SGS models, namely the dynamic Smagorinsky model and the wall-adapting local-eddy viscosity model are found to provide less agreement with pseudo- spectral LES, for example, as they lead to less coherent bottom convergence of the cells and weaker associ ated upward transport of slow downwind moving fluid. Finally, LES with the S-Omega SGS model is also found to lead to good agreement with physical measurements of LC in the coastal ocean in terms of Langmuir turbulence decay during periods of surface heatingmore » « less
An official website of the United States government

