Rates at which a community recovers after disturbance, or its resilience, can be accelerated by increased net primary productivity and recolonization dynamics such as recruitment. These mechanisms can vary across biogeographic gradients, such as latitude, suggesting that biogeography is likely important to predicting resilience. To test whether community resilience, informed by functional and compositional recovery, hinges on geographic location, we employed a standardized replicated experiment on marine invertebrate communities across four regions from the tropics to the subarctic zone. Communities assembled naturally on standardized substrate while experiencing distinct levels of biomass removal (no removal, low disturbance, and high disturbance), which opened space for new colonizers, thereby providing a pulse of limited resource to these communities. We then quantified functional (space occupancy and biomass) and compositional recovery from these repeated pulse disturbances across two community assembly timescales (early and late at 3 and 12 months, respectively). We documented latitudinal variation in resilience across 47° latitude, where speed of functional recovery was higher toward lower latitudes yet incomplete at late assembly in the tropics and subtropics. The degree of functional recovery did not coincide with compositional recovery, and regional differences in recruitment and growth likely contributed to functional recovery in these communities. While biogeographic variation in community resilience has been predicted, our results are among the first to examine functional and compositional recovery from disturbance in a single large‐scale standardized experiment.
- Award ID(s):
- 1638311
- NSF-PAR ID:
- 10204513
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 17
- Issue:
- 163
- ISSN:
- 1742-5689
- Page Range / eLocation ID:
- 20190532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Physical infrastructure networks in diverse urban settlements are designed to be robust and reliable, while the socio-economic systems offer the necessary adaptive capacity at household, city, and regional scales to recover from major service disruptions resulting from disasters. Here, our urban resilience analyses are based on exploring explicit links between the physical infrastructure/assets and the socio-economic systems. Increased availability of high-quality data from mobile devices allows quantification of diverse socio-economic metrics and thus enables tracking city- and regional-scale community recovery from disasters. Here, recovery trajectories for five regions within Puerto Rico island with differences in socio-economic status (e.g., median income) after Hurricanes Irma and Maria are analyzed using large-scale mobility data and are combined with earlier synthesis of seven global cities based on capital portfolio analysis. Systemic inequalities are manifested in highly variable ability to cope with chronic shocks and recovery from extreme events. Island urban communities face the geographic-isolation effect, legacy socioeconomic constraints, and chronic inefficiencies in governance, all of which delay recovery from disasters. Hurricane recovery efforts include two types of responses. First, in larger urban areas, households use their social ties and financial resources to evacuate to larger cities and return when damaged facilities and infrastructure are repaired. Second, smaller urban communities are already adapted to coping with inadequate critical services and experience disproportionate impacts of disasters. Lacking socio-economic resources, such communities self-organize to access local and external resources and actively engage in repairing and rebuilding damaged facilities. However, recovery is much slower than their counterparts in larger cities. Given the interdependencies of connected social and physical systems and cross-scale feedbacks, such inequalities must be addressed at both city and regional scales to continue progress in urban community preparedness for and recovery from disasters.
-
Abstract While conceptual definitions provide a foundation for the study of disasters and their impacts, the challenge for researchers and practitioners alike has been to develop objective and rigorous measures of resilience that are generalizable and scalable, taking into account spatiotemporal dynamics in the response and recovery of localized communities. In this paper, we analyze mobility patterns of more than 800,000 anonymized mobile devices in Houston, Texas, representing approximately 35% of the local population, in response to Hurricane Harvey in 2017. Using changes in mobility behavior before, during, and after the disaster, we empirically define community resilience capacity as a function of the magnitude of impact and time-to-recovery. Overall, we find clear socioeconomic and racial disparities in resilience capacity and evacuation patterns. Our work provides new insight into the behavioral response to disasters and provides the basis for data-driven public sector decisions that prioritize the equitable allocation of resources to vulnerable neighborhoods.
-
The objective of this study is to examine spatial patterns of disaster impacts and recovery of communities based on fluctuations in credit card transactions (CCTs). Such fluctuations could capture the collective effects of household impacts, disrupted accesses, and business closures and thus provide an integrative measure for examining disaster impacts and community recovery. Existing studies depend mainly on survey and sociodemographic data for disaster impacts and recovery effort evaluations, although such data has limitations, including large data collection efforts and delayed timeliness results. Also, there are very few studies have concentrated on spatial patterns of disaster impacts and short-term recovery of communities, although such investigation can enhance situational awareness during disasters and support the identification of disparate spatial patterns of disaster impacts and recovery in the impacted regions. This study examines CCTs data Harris County (Texas, USA) during Hurricane Harvey in 2017 to explore spatial patterns of disaster impacts and recovery duration from the perspective of community residents and businesses at ZIP-code and county scales, respectively, and to further investigate their spatial disparities across ZIP codes. The results indicate that individuals in ZIP codes with populations of higher income experienced more severe disaster impact and recovered more quickly than those located in lower income ZIP codes for most business sectors. Our findings not only enhance the understanding of spatial patterns and disparities in disaster impacts and recovery for better community resilience assessment but also could benefit emergency managers, city planners, and public officials in enhanced situational awareness and resource allocation.more » « less
-
Quantitative assessment of community resilience is a challenge due to the lack of empirical data about human dynamics in disasters. To fill the data gap, this study explores the utility of nighttime lights (NTL) remote sensing images in assessing community recovery and resilience in natural disasters. Specifically, this study utilized the newly-released NASA moonlight-adjusted SNPP-VIIRS daily images to analyze spatiotemporal changes of NTL radiance in Hurricane Sandy (2012). Based on the conceptual framework of recovery trajectory, NTL disturbance and recovery during the hurricane were calculated at different spatial units and analyzed using spatial analysis tools. Regression analysis was applied to explore relations between the observed NTL changes and explanatory variables, such as wind speed, housing damage, land cover, and Twitter keywords. The result indicates potential factors of NTL changes and urban-rural disparities of disaster impacts and recovery. This study shows that NTL remote sensing images are a low-cost instrument to collect near-real-time, large-scale, and high-resolution human dynamics data in disasters, which provide a novel insight into community recovery and resilience. The uncovered spatial disparities of community recovery help improve disaster awareness and preparation of local communities and promote resilience against future disasters. The systematical documentation of the analysis workflow provides a reference for future research in the application of SNPP-VIIRS daily images.more » « less